home *** CD-ROM | disk | FTP | other *** search
- Newsgroups: sci.math.research
- Path: sparky!uunet!zaphod.mps.ohio-state.edu!uwm.edu!ux1.cso.uiuc.edu!news.cso.uiuc.edu!usenet
- From: kgrant@alfred.ccs.carleton.ca (Ken Grant)
- Subject: Topology problem
- Message-ID: <kgrant.721449847@cunews>
- Sender: Daniel Grayson <dan@math.uiuc.edu>
- X-Submissions-To: sci-math-research@uiuc.edu
- Organization: Carleton University
- X-Administrivia-To: sci-math-research-request@uiuc.edu
- Approved: Daniel Grayson <dan@math.uiuc.edu>
- Date: Wed, 11 Nov 1992 02:44:07 GMT
- Lines: 15
-
- Topology problem:
- If X is the continuous image of a countable successor ordinal with the
- order topology by a map with all fibers finite, then is there a
- compact Hausdorff topology finer than the topology of X ?
-
- (If so then X countable T1, X the cts image of a compact Hausdorff
- space ==> X is the cts image of a compact Hausdorff space under a
- bijective map.
- Is there a counterexample for X uncountable?)
-
- Ken Grant.
-
-
-
-
-