home *** CD-ROM | disk | FTP | other *** search
- Newsgroups: sci.math.research
- Path: sparky!uunet!sun-barr!cs.utexas.edu!usc!zaphod.mps.ohio-state.edu!uwm.edu!ux1.cso.uiuc.edu!news.cso.uiuc.edu!usenet
- From: cgutierr@mat.puc.cl (Claudio Gutierrez)
- Subject: combinatorial set theory
- Message-ID: <1992Nov11.164014.14768@tolten.puc.cl>
- Sender: Daniel Grayson <dan@math.uiuc.edu>
- X-Submissions-To: sci-math-research@uiuc.edu
- Organization: Pontificia Universidad Catolica de Chile
- X-Administrivia-To: sci-math-research-request@uiuc.edu
- Approved: Daniel Grayson <dan@math.uiuc.edu>
- Date: Wed, 11 Nov 1992 16:40:14 GMT
- Lines: 17
-
- Keywords:
-
- I need the following result (that can be of comon sense)
-
- Exists a family of sets *A* = { Ai}_{i \in \omega}
- such that there is a family
- *F* of infinite subsets of *A* with |*F*|=2^{\omega}
- with the properties:
- i) Each B \in *F* has F.I.P. (The intersection of a
- finite numbers of elements of each B \in *F* is non empty.
- ii) For all B \in *F* , the intersection of all the
- elements of B is empty.
- iii) For all B={B1,B2,...} \in *F*, B'={B'12,B'2,...} \in *F*
- there exists n \in |N such that
- Intersection{B1,...,Bn} and Intersection{B'1,..,B'n}
- are dosjoint.
-
-