home *** CD-ROM | disk | FTP | other *** search
- Path: sparky!uunet!portal!lll-winken!ames!haven.umd.edu!darwin.sura.net!news.udel.edu!udel!sbcs.sunysb.edu!hanche
- From: hanche@ams.sunysb.edu (Harald Hanche-Olsen)
- Newsgroups: sci.math
- Subject: Re: Raising Complex Numbers To A Complex Power...
- Message-ID: <HANCHE.92Oct15111026@amirani.ams.sunysb.edu>
- Date: 15 Oct 92 16:10:26 GMT
- References: <wer8=RK00UhBQ4C1JT@andrew.cmu.edu>
- Sender: usenet@sbcs.sunysb.edu (Usenet poster)
- Organization: University at Stony Brook, NY
- Lines: 14
- In-Reply-To: cd2d+@andrew.cmu.edu's message of 14 Oct 92 12: 28:13 GMT
- Nntp-Posting-Host: amirani.ams.sunysb.edu
-
- >>>>> On 14 Oct 92 12:28:13 GMT, cd2d+@andrew.cmu.edu (Christopher Paul Diehl) said:
- Chris> Article-I.D.: andrew.wer8=RK00UhBQ4C1JT
-
- Chris> Could someone explain how to compute (a+bi)^(c+di)? Thanks for
- Chris> your help...
-
- (a+bi)^(c+di)=exp[(c+di) log(a+bi)], where log(a+bi)=log(|a+bi|)+i arg(a+bi).
-
- The argument arg(a+bi) is of course only determined up to an integer
- multiple of 2 pi, which means there are (usually) infinitely many
- answers. This might motivate you to learn about branch points and
- Riemann surfaces, if you are inclined towards mathematical adventure.
-
- - Harald
-