home *** CD-ROM | disk | FTP | other *** search
- Newsgroups: sci.math.research
- Path: sparky!uunet!usc!zaphod.mps.ohio-state.edu!moe.ksu.ksu.edu!ux1.cso.uiuc.edu!news.cso.uiuc.edu!usenet
- From: a_rubin@dsg4.dse.beckman.com (Arthur Rubin)
- Subject: Re: Better than Cauchy-Schwarz
- References: <18ltblINN8oq@darkstar.UCSC.EDU>
- Nntp-Posting-Host: dn66.dse.beckman.com
- Message-ID: <a_rubin.716165042@dn66>
- Sender: Daniel Grayson <dan@math.uiuc.edu>
- X-Submissions-To: sci-math-research@uiuc.edu
- Organization: University of Illinois at Urbana
- X-Administrivia-To: sci-math-research-request@uiuc.edu
- Approved: Daniel Grayson <dan@math.uiuc.edu>
- Date: Thu, 10 Sep 1992 22:44:02 GMT
- Keywords: analysis cauchy-schwarz
- Lines: 63
-
- In <18ltblINN8oq@darkstar.UCSC.EDU> sutin@helios.ucsc.edu (Brian Sutin) writes:
-
- >I have a conjecture which I have been unable to find in the library, prove,
- >or discover a conterexample:
-
- >There exists some constant C > 0 such that for all non-negative functions
- >f(x) on [0,inf] which satisfy the inequality
-
- >INT{ f(x) x dx } <= C INT{ f(x) dx } ,
-
- >the inequality
-
- >INT{ f(x) dx }^2 <= INT{ f(x)^2 dx }
-
- >also holds. All integrals are over [0,inf] and converge.
-
- Without loss of generality, we can assume INT { f(x) dx } = 1, as all the
- inequalities scale.
-
- Now we can rewrite the problem as:
-
- INT {f(x) dx} = 1
- INT {f(x) x dx} = A <= C
- implies
- min INT {f(x)^2 dx} >= 1
-
- As a calculus of variations problem, we can (to find what f has the min
- value) write
-
- D[INT {f(x)^2 dx} - \lambda INT {f(x) dx} - \mu INT {f(x) x dx},f] =
- INT {2 f(x) df(x) dx} - \lambda INT {df(x) dx} - \mu {df(x) x dx} =
- INT {df(x) (2 f(x) - \lambda - \mu x) dx} >= 0,
-
- for any df which is non-negative where f is 0.
-
- Hence, f(x) > 0 -> f(x) = 1/2 (\lambda + \mu x)
-
- Working over any interval [0,X] where X >= 3A, (to make it likely that
- things converge and have limits), we find:
-
- f_A(x) = (3A-x) (2/9 A^-2), for 0<=x<=3A, and 0 otherwise.
-
- should be the extreme function.
-
- Then, INT {f(x)^2 dx} = 4/(9 A)
-
- In this case, we can verify directly that, if INT {g(x) dx} = 1, and
- INT {g(x) x dx} = A, that
-
- INT { g(x)^2 dx} =
- INT {(f_A(x)^2 + 2 f_A(x) (f_A(x) - g(x)) + (f_A(x)-g(x))^2) dx} =
- INT {f_A(x)^2 dx} + 2 INT{f_A(x) (f_A(x) - g(x)) dx} + INT {(f_A(x)-g(x))^2) dx} =
- 4/(9A) + (>= 0 by differencial approx.) + >= 0
-
- Hence, if C>= 9/4, the inequality holds.
-
-
- --
- Arthur L. Rubin: a_rubin@dsg4.dse.beckman.com (work) Beckman Instruments/Brea
- 216-5888@mcimail.com 70707.453@compuserve.com arthur@pnet01.cts.com (personal)
- My opinions are my own, and do not represent those of my employer.
- My interaction with our news system is unstable; please mail anything important.
-
-