home *** CD-ROM | disk | FTP | other *** search
- Newsgroups: sci.math.research
- Path: sparky!uunet!usc!sdd.hp.com!ux1.cso.uiuc.edu!news.cso.uiuc.edu!usenet
- From: broman@schroeder.nosc.mil (Vincent Broman)
- Subject: Re: Better than Cauchy-Schwarz
- References: <18ltblINN8oq@darkstar.UCSC.EDU>
- Message-ID: <BROMAN.92Sep10152535@schroeder.nosc.mil>
- Sender: Daniel Grayson <dan@math.uiuc.edu>
- Reply-To: broman@nosc.mil
- X-Submissions-To: sci-math-research@uiuc.edu
- Organization: Naval Command Control and Ocean Surveillance Center, RDT&E Div.
- X-Administrivia-To: sci-math-research-request@uiuc.edu
- Approved: Daniel Grayson <dan@math.uiuc.edu>
- In-Reply-To: sutin@helios.ucsc.edu's message of Wed, 9 Sep 1992 22:20:37 GMT
- Date: Thu, 10 Sep 1992 23:25:35 GMT
- Lines: 22
-
- let C = 1/8,
- let f be L1 and L2 on [0,\infty),
- and let \int_0^\infty f(x) x dx < C \int_0^\infty f(x) dx.
-
- Then
- \int_0^C f(x) (C-x) dx >= \int_C^\infty f(x) (x-C) dx
- implies with a slight amount of work
- \int_0^{2 C} f(x) dx >= \int_{2 C}^\infty f(x) dx,
- meaning that the median is not more than twice the mean.
-
- Apply Cauchy-Schwartz to f and the characteristic function on [0,2C].
- Then,
- \int_0^\infty f^2 >= ( \int_0^{2 C} f )^2 / (2 C)
- >= ( 1/2 \int_0^\infty f )^2 / (2 C)
- = ( \int_0^\infty f )^2.
-
- Vincent Broman, code 572 bayside, = o
- Naval Command Control and Ocean Surveillance Center, RDT&E Div. = _ /- _
- San Diego, CA 92152-5000, USA = (_)> (_)
- Internet Email: broman@nosc.mil Fax: +1 619 553 1635 Phone: +1 619 553 1641
-
-
-