home *** CD-ROM | disk | FTP | other *** search
- Newsgroups: sci.math.research
- Path: sparky!uunet!zaphod.mps.ohio-state.edu!rpi!usc!sdd.hp.com!ux1.cso.uiuc.edu!news.cso.uiuc.edu!usenet
- From: a_rubin@dsg4.dse.beckman.com (Arthur Rubin)
- Subject: Re: dynamical systems and (perhaps) algebraic geometry
- References: <Bu9Ax6.H59@ens-lyon.fr>
- Nntp-Posting-Host: dn66.dse.beckman.com
- Message-ID: <a_rubin.715980149@dn66>
- Sender: Daniel Grayson <dan@math.uiuc.edu>
- X-Submissions-To: sci-math-research@uiuc.edu
- Organization: University of Illinois at Urbana
- X-Administrivia-To: sci-math-research-request@uiuc.edu
- Approved: Daniel Grayson <dan@math.uiuc.edu>
- Date: Tue, 8 Sep 1992 19:22:29 GMT
- Lines: 30
-
- In <Bu9Ax6.H59@ens-lyon.fr> koiran@ens.ens-lyon.fr (Pascal Koiran) writes:
-
- >Hello,
-
- >Can someone provide a solution to the following problem, or give references
- >to related work in the litterature ?
-
- >Let f:[0,1]^n-->[0,1]^n (n>1) be a function of the form
- >f(x)=(P_1(x),P_2(x),...,P_n(x)) where the P_i's are polynomials.
- >Let's consider the iterates of f. Is the following situation possible ?
-
- >for all k, there exists an infinite number of k-cycles (by k-cycle, I mean
- >a cycle of length exactly k).
-
- P_1(x) = g(x_1) = 4 x_1 (1-x_1); P_i(x) = x_i (2<=i<=n) should work, as:
-
- g has k-cycles for all k (well-known result; e.g. (1-cos(2 pi/(2^k-1)))/2
- is in a k-cycle of g).
-
- If a_1,a_2,...,a_k is a k-cycle of g, then (a_1,x_2,...,x_n),
- (a_2,x_2,...,x_n), ..., (a_k,x_2,...,x_n) is a k-cycle of f.
-
-
-
- --
- Arthur L. Rubin: a_rubin@dsg4.dse.beckman.com (work) Beckman Instruments/Brea
- 216-5888@mcimail.com 70707.453@compuserve.com arthur@pnet01.cts.com (personal)
- My opinions are my own, and do not represent those of my employer.
- My interaction with our news system is unstable; please mail anything important.
-
-