home *** CD-ROM | disk | FTP | other *** search
- Newsgroups: sci.math.research
- Path: sparky!uunet!munnari.oz.au!spool.mu.edu!sdd.hp.com!ux1.cso.uiuc.edu!news.cso.uiuc.edu!usenet
- From: chernoff@garnet.Berkeley.EDU (Paul R. Chernoff)
- Subject: Re: Exponential of an arbitrary mapping f: R^n -> R^n
- References: <1992Aug28.181224.14463@nas.nasa.gov>
- Nntp-Posting-Host: garnet.berkeley.edu
- Message-ID: <18gen5INN6so@agate.berkeley.edu>
- Sender: Daniel Grayson <dan@math.uiuc.edu>
- X-Submissions-To: sci-math-research@uiuc.edu
- Organization: University of California, Berkeley
- X-Administrivia-To: sci-math-research-request@uiuc.edu
- Approved: Daniel Grayson <dan@math.uiuc.edu>
- Date: Mon, 7 Sep 1992 20:40:05 GMT
- Lines: 32
-
- In article <1992Aug28.181224.14463@nas.nasa.gov> asimov@nas.nasa.gov (Daniel A. Asimov) writes:
- >One way to generalize the exponential of a matrix to arbitrary
- >continuous functions f: R^n -> R^n is as follows:
- >
- >exp(f): R^n -> R^n via
- >
- > exp(f)(x) = x + f(x) + f(f(x))/2! + f(f(f(x)))/3! +...
- >
-
- ----------------------------------------
- Comment: this is an unusual generalization of the exponential to nonlinear
- functions f. I'd be curious as to its motivation.
-
- The usual idea, of course, is to regard exp(tA)x, where A is a linear map,
- as the solution of the differential equation
- dy/dt = Ay(t), y(0) = x.
-
- The standard generalization is the solution of
- dy/dt = f(y(t)), y(0) = x.
-
- There is no "explicit" form of the solution, but there is a highly developed
- theory, e.g. the theory of nonlinear semigroups.
-
- ----
-
-
- --
- # Paul R. Chernoff chernoff@math.berkeley.edu #
- # Department of Mathematics ucbvax!math!chernoff #
- # University of California chernoff%math@ucbvax.bitnet #
- # Berkeley, CA 94720 #
-
-