home *** CD-ROM | disk | FTP | other *** search
- Path: sparky!uunet!sun-barr!olivea!mintaka.lcs.mit.edu!zurich.ai.mit.edu!ara
- From: ara@zurich.ai.mit.edu (Allan Adler)
- Newsgroups: sci.math
- Subject: Promise in EGA
- Message-ID: <ARA.92Sep12130327@camelot.ai.mit.edu>
- Date: 12 Sep 92 18:03:27 GMT
- Sender: news@mintaka.lcs.mit.edu
- Distribution: sci
- Organization: M.I.T. Artificial Intelligence Lab.
- Lines: 17
-
-
- In EGA IV.21.15.9, Grothendieck considers the following situation:
- one has a scheme S and a flat S-scheme f:X-->S. Under those conditions,
- he defines the group Div(X/S) of divisors on X relative to S. He then
- is able to define functors Div_{X/S}: Sch/S--> Ab and
- Div_{X/S}^+:Sch/S-->Ens by associating to any S-scheme S'-->S the group
- Div(X'/S') and the set Div^+(X'/S') respectively, where X' is the product
- of X and S' over S.
-
- Grothendieck then writes: "On verra plus loin (chap. VI) des cas importants
- o\`u le functeur $Div^+_{X/S}$ est repr\'esentable ($\bf0_{III}$,8.1.8)."
-
- As we all know, Chapter 6 never got written. Did the theorem that Grothendieck
- refers to ever get proved anywhere else and if so where?
-
- Allan Adler
- ara@altdorf.ai.mit.edu
-