home *** CD-ROM | disk | FTP | other *** search
- Newsgroups: sci.math
- Path: sparky!uunet!usc!wupost!darwin.sura.net!jvnc.net!nuscc!bhonsle!bhonsle
- From: bhonsle@bhonsle.iss.nus.sg (Shailendra K Bhonsle)
- Subject: Re: u(v^n)w prime puzzle SOLUTION
- Message-ID: <1992Aug24.025850.22866@nuscc.nus.sg>
- Sender: bhonsle@bhonsle (Shailendra K Bhonsle)
- Organization: Institute of Systems Science, NUS, Singapore
- References: <1992Aug21.220719.16092@wri.com>
- Date: Mon, 24 Aug 1992 02:58:50 GMT
- Lines: 36
-
- In article <1992Aug21.220719.16092@wri.com>, roach@bikini.wri.com (Kelly Roach) writes:
- |>
- |>
-
- |> Sum[10^(a*i+b),{i,0,n-1}] = 0 (mod p)
- |>
- |> Prime number p does not divide 10 because uw has at least
- |> 2 digits. Hence
- |>
- |> 10^(a*i+b) (mod p)
- |>
- |> is a periodic function of i. The period divides p-1
- |> and that means that if p(p-1) | n, then each residue
- |> appearing in the list
- |>
- |> 10^b, 10^(a+b), ..., 10^(a*(n-1)+b) (mod p)
- |>
- |> appears a multiple of p times. Consequently, it is
- |> sufficient to let n=p(p-1) to get p | u(v^n)w. Obviously
- |> u(v^n)w > p=uw.
- |>
- |> QED
- |>
- |>
-
- Is there a mistake here? what if p^2 divides 10^a-1? Since a & p are independent
- consider a =x. p.(p-1) (where x is any positive integer.)
-
- In this case each residue appearing in the list will be a multiple of p^2 and one needs to choose n=p^2 (p-1).
-
- In general if p^i exactly divides 10^a-1 then choose n=(p^(i-1))(p-1)
-
-
- Shailendra
-
- --
-