home *** CD-ROM | disk | FTP | other *** search
- Newsgroups: sci.math
- Path: sparky!uunet!zaphod.mps.ohio-state.edu!darwin.sura.net!jvnc.net!nuscc!bhonsle!bhonsle
- From: bhonsle@bhonsle.iss.nus.sg (Shailendra K Bhonsle)
- Subject: Can you prove it?
- Message-ID: <1992Aug20.055633.19046@nuscc.nus.sg>
- Keywords: Number theory
- Sender: bhonsle@bhonsle (Shailendra K Bhonsle)
- Organization: Institute of Systems Science, NUS, Singapore
- Date: Thu, 20 Aug 1992 05:56:33 GMT
- Lines: 23
-
- Hi
- I have a simple problem, can you prove or disprove it? I will appreciate all replies:
-
- Problem:
-
- Prove that for primes p & q, q<p
-
- if 2^(p-1) == 1 (mod q^2)
-
- then either 2^(q-1) == 1 (mod q^2) or q | p-1 { q divides (p-1}
-
-
-
-
- I have some sort of solution but I am not very sure.
-
-
- Shailendra
-
- (bhonsle @ iss.nus.sg)
-
-
- --
-