home *** CD-ROM | disk | FTP | other *** search
- Newsgroups: sci.math.research
- Path: sparky!uunet!zaphod.mps.ohio-state.edu!uwm.edu!ux1.cso.uiuc.edu!news.cso.uiuc.edu!dan
- From: mso@ukc.ac.uk (Michael S. Ody)
- Subject: Certain minimal surfaces in R^3
- Nntp-Posting-Host: eagle.ukc.ac.uk
- Message-ID: <2632@eagle.ukc.ac.uk>
- Originator: dan@symcom.math.uiuc.edu
- Sender: Daniel Grayson <dan@math.uiuc.edu>
- X-Submissions-To: sci-math-research@uiuc.edu
- Organization: Physics Lab, The University, Canterbury, Kent, UK
- X-Administrivia-To: sci-math-research-request@uiuc.edu
- Approved: Daniel Grayson <dan@math.uiuc.edu>
- Date: Fri, 18 Dec 1992 11:23:41 GMT
- Lines: 30
-
-
- I am interested in certain surfaces in R^3 defined by the following
- metric g_ij and second fundamental form L_ij (i,j = 1,2) :
-
- g_ij = E(x,y) (dx^2 + dy^2)
-
- L_ij = c (dx^2 - dy^2).
-
- Apologies for the abuse of notation. The components are
-
- g_11 = g_22 = E(x,y)
-
- L_11 = -L_22 = c
-
- g_12 = g_21 = L_12 = L_21 = 0
-
- where E(x,y) is a function of x and y, and c is a constant.
- This is a minimal surface because the mean curvature is zero:
-
- K_m = L_11 g_22 + g_11 L_22 = 0.
-
- I want to know whether surfaces of this form have been studied before,
- and, if so, references to the literature.
-
- --
- Michael S. Ody,
- The Physics Laboratory,
- University of Kent at Canterbury,
- CT2 7NZ, United Kingdom.
-
-