home *** CD-ROM | disk | FTP | other *** search
- Newsgroups: sci.math.research
- Path: sparky!uunet!zaphod.mps.ohio-state.edu!sdd.hp.com!ux1.cso.uiuc.edu!news.cso.uiuc.edu!dan
- From: asimov@nas.nasa.gov (Daniel A. Asimov)
- Subject: Foliations of the Plane
- Message-ID: <1992Dec16.204428.2993@nas.nasa.gov>
- Originator: dan@symcom.math.uiuc.edu
- Sender: Daniel Grayson <dan@math.uiuc.edu>
- X-Submissions-To: sci-math-research@uiuc.edu
- Organization: NAS, NASA Ames Research Center, Moffett Field, California
- X-Administrivia-To: sci-math-research-request@uiuc.edu
- Approved: Daniel Grayson <dan@math.uiuc.edu>
- Date: Wed, 16 Dec 1992 20:44:28 GMT
- Lines: 16
-
- Let F denote a smooth foliation of R^2.
-
- Does there necessarily exist a C^1 function g: R^2 -> R such that each
- leaf of F is a connected component of a level set of g ?
-
- If this is always possible, can g always be chosen so as to also be smooth?
-
-
- Dan Asimov
- Mail Stop T045-1
- NASA Ames Research Center
- Moffett Field, CA 94035-1000
-
- asimov@nas.nasa.gov
- (415) 604-4799
-
-