home *** CD-ROM | disk | FTP | other *** search
- Newsgroups: sci.math.research
- Path: sparky!uunet!elroy.jpl.nasa.gov!sdd.hp.com!ux1.cso.uiuc.edu!news.cso.uiuc.edu!dan
- From: das18@cunixa.cc.columbia.edu (Debojyoti A Sarkar)
- Subject: Help
- Nntp-Posting-Host: cunixa.cc.columbia.edu
- Message-ID: <1992Dec11.180153.2629@news.columbia.edu>
- Originator: dan@symcom.math.uiuc.edu
- Sender: Daniel Grayson <dan@math.uiuc.edu>
- Reply-To: das18@cunixa.cc.columbia.edu (Debojyoti A Sarkar)
- X-Submissions-To: sci-math-research@uiuc.edu
- Organization: Columbia University
- X-Administrivia-To: sci-math-research-request@uiuc.edu
- Approved: Daniel Grayson <dan@math.uiuc.edu>
- Date: Fri, 11 Dec 1992 18:01:53 GMT
- Lines: 20
-
-
- I have the following problem:
-
- min J=summation t=0 to inf 1/2(r* - r(t))**2
- s.t. q(t+1) = (1-d)q(t)+c(t)+h(t)
- r(t)=f(q(t)), f'<0
- h(t)=g(r(t-1))
- q0 (initial q) given.
-
- Is it possible to get a closed form solution for (c(t) and h(t)) t=0 to inf?
- The control variables are c and h and the state variable is q. Initially I
- am interested in a deterministic setup, but later on I would like to have a
- stochastic system where the uncertainty would entre as follows :
-
- r(t)=f(q(t), w(t)) where w would be the source of uncertainty.
-
-
-
-
-
-