home *** CD-ROM | disk | FTP | other *** search
- Path: sparky!uunet!newsflash.concordia.ca!mizar.cc.umanitoba.ca!access.usask.ca!skorpio!choy
- From: choy@skorpio.usask.ca (I am a terminator.)
- Newsgroups: sci.math
- Subject: Re: Tiling problem
- Date: 16 Dec 1992 02:10:43 GMT
- Organization: University of Saskatchewan, Saskatoon, Canada
- Lines: 15
- Sender: choy@skorpio (I am a terminator.)
- Distribution: world
- Message-ID: <1gm373INNafn@access.usask.ca>
- References: <israel.723716857@unixg.ubc.ca> <israel.723837962@unixg.ubc.ca> <1gggutINN29q@access.usask.ca>
- NNTP-Posting-Host: skorpio.usask.ca
-
- In article <1gggutINN29q@access.usask.ca>, choy@skorpio.usask.ca (I am a terminator.) writes:
- |> In article <israel.723837962@unixg.ubc.ca>, israel@unixg.ubc.ca (Robert B. Israel) writes:
- |> |> In <rcbaaw.723228012@rwb.urc.tue.nl>, rwb.urc.tue.nl (Angelo
- |> |> Wentzler) writes:
- |> |>
- |> |> >Given a grid of squares, tile it with black and white tiles and make
- |> |> >the largest possible square so that no square contained in it has four
- |> |> >equally colored corners.
-
- Never mind my previous post, but can such an n x n square be constructed
- as a permutation of an n x n checkerboard?
-
- Henry Choy
- choy@cs.usask.ca
-
-