home *** CD-ROM | disk | FTP | other *** search
- Path: sparky!uunet!newsflash.concordia.ca!mizar.cc.umanitoba.ca!access.usask.ca!skorpio!choy
- From: choy@skorpio.usask.ca (I am a terminator.)
- Newsgroups: sci.math
- Subject: Re: Tiling problem
- Date: 13 Dec 1992 23:28:29 GMT
- Organization: University of Saskatchewan, Saskatoon, Canada
- Lines: 133
- Sender: choy@skorpio (I am a terminator.)
- Distribution: world
- Message-ID: <1gggutINN29q@access.usask.ca>
- References: <israel.723716857@unixg.ubc.ca> <israel.723837962@unixg.ubc.ca>
- NNTP-Posting-Host: skorpio.usask.ca
-
- In article <israel.723837962@unixg.ubc.ca>, israel@unixg.ubc.ca (Robert B. Israel) writes:
- |> In <rcbaaw.723228012@rwb.urc.tue.nl>, rwb.urc.tue.nl (Angelo
- |> Wentzler) writes:
- |>
- |> >Given a grid of squares, tile it with black and white tiles and make
- |> >the largest possible square so that no square contained in it has four
- |> >equally colored corners.
- |>
- |> >My computer is fairly slow (8MHz), but after only 6 hours of calculation I
- |> >came up with an 11x11 square. About 24 hours later I still hadn't found a
- |> >12x12 square!! (An abundance of 11x11, though...)
- |> >Two days later: still nothing.
- |>
- |> On an overnight run with over 1.2 million steps of tabu search, I did
- |> find a 13x13 square:
- |>
- |> 0001101010110
- |> 0101011000011
- |> 1100001101110
- |> 0110101011000
- |> 0101100001101
- |> 0000110101011
- |> 1011101100001
- |> 0110000110111
- |> 0011010101100
- |> 1010110000110
- |> 1000011011101
- |> 1101110110000
- |> 1011000011010
- |>
- |> Since 12x12 only took a few thousand steps, I think this is a good
- |> time to quit.
- |> --
- |> Robert Israel israel@math.ubc.ca
- |> Department of Mathematics or israel@unixg.ubc.ca
- |> University of British Columbia
- |> Vancouver, BC, Canada V6T 1Y4
-
-
- Would the following be a recursive solution?
-
- 0
-
- 1
-
- Kinda small--let's double the size.
-
- 00
- 00
-
- Um ... no internal squares in these little squares so no 4 colored corners.
-
- Doubling again:
-
- 0011
- 0011
- 1100
- 1100
-
- Now your starting to worry. The internal squares have 4 (colored) corners.
- In general, the internal 0 (or the internal 1) has two 0 corners and two
- 1 corners. So that's OK.
-
- 00110011
- 00110011
- 11001100
- 11001100
- 00110011
- 00110011
- 11001100
- 11001100
-
- Recursing makes a checkerboard so internal squares have two colors on the
- corners.
-
- 0011001100110011
- 0011001100110011
- 1100110011001100
- 1100110011001100
- 0011001100110011
- 0011001100110011
- 1100110011001100
- 1100110011001100
- 0011001100110011
- 0011001100110011
- 1100110011001100
- 1100110011001100
- 0011001100110011
- 0011001100110011
- 1100110011001100
- 1100110011001100
-
- 00110011001100110011001100110011
- 00110011001100110011001100110011
- 11001100110011001100110011001100
- 11001100110011001100110011001100
- 00110011001100110011001100110011
- 00110011001100110011001100110011
- 11001100110011001100110011001100
- 11001100110011001100110011001100
- 00110011001100110011001100110011
- 00110011001100110011001100110011
- 11001100110011001100110011001100
- 11001100110011001100110011001100
- 00110011001100110011001100110011
- 00110011001100110011001100110011
- 11001100110011001100110011001100
- 11001100110011001100110011001100
- 00110011001100110011001100110011
- 00110011001100110011001100110011
- 11001100110011001100110011001100
- 11001100110011001100110011001100
- 00110011001100110011001100110011
- 00110011001100110011001100110011
- 11001100110011001100110011001100
- 11001100110011001100110011001100
- 00110011001100110011001100110011
- 00110011001100110011001100110011
- 11001100110011001100110011001100
- 11001100110011001100110011001100
- 00110011001100110011001100110011
- 00110011001100110011001100110011
- 11001100110011001100110011001100
- 11001100110011001100110011001100
-
-
-
- Henry Choy
- choy@cs.usask.ca
-
- I guess they don't have all 4 sides the same color either.
-
- Bummer.
-