home *** CD-ROM | disk | FTP | other *** search
/ NetNews Usenet Archive 1992 #27 / NN_1992_27.iso / spool / sci / math / numanal / 3371 < prev    next >
Encoding:
Text File  |  1992-11-20  |  2.3 KB  |  60 lines

  1. Newsgroups: sci.math.num-analysis
  2. Path: sparky!uunet!usc!sol.ctr.columbia.edu!ira.uka.de!rz.uni-karlsruhe.de!rz.uni-karlsruhe.de!bosch
  3. From: bosch@rz.uni-karlsruhe.de (Gerhard Bosch)
  4. Subject: Determining the distance from the boundaries in a 2-dim. domain 
  5. Message-ID: <1992Nov21.070021.13214@rz.uni-karlsruhe.de>
  6. Sender: usenet@rz.uni-karlsruhe.de (USENET 'No news is bad news' News System)
  7. Organization: University of Karlsruhe, Germany
  8. Date: Sat, 21 Nov 1992 07:00:21 GMT
  9. Lines: 49
  10.  
  11. Hi guys,
  12.  
  13. I have a probably very simple quesiton for math guys. I haven't worked out
  14. this problem yet, because I couldn't find a starting point.
  15.  
  16. I interested in the field of CFD with curvi-linear grid. So I have a 
  17. grid, which is locally more or less orthogonal and the boundaries are
  18. fitted to any arbitrary body shape. It should be mentioned that I'm 
  19. dealing with four-sided cells in these grids.
  20.  
  21. The problem is to detect the distance of all the center points from the
  22. 2 boundaries of the domain. This distance should be the normal distance,
  23. to have the smallest path.
  24.  
  25.  
  26.  
  27.  
  28. A simple  example:
  29.  
  30.                                                   2
  31. ***********************             **************************
  32. *                     *             *                        * 
  33. *                     *             *                        *
  34. *                      *         1 *                         *
  35. *                       *         *                          *
  36. *                        *       *                           *
  37. *                         **   **           X                *3
  38. *                           ***                              *
  39. *                                                            *
  40. *                                                            *
  41. *                                                            *
  42. *                                                            *
  43. **************************************************************
  44.                                              4                
  45.  
  46.  
  47. X is an arbitrary point in the domain, with a know location.
  48. That point is influence in this special case by 4 wall marked
  49. marked with the numbers 1,2,3 and 4. I need now the points on
  50. all these 4 surfaces and their distance to the point given by
  51. X.
  52.  
  53. This is already a special case. Did anybody consider something
  54. similar and more general.
  55.  
  56.  
  57.  
  58. Sincerely, Gerhard Bosch
  59.  
  60.