home *** CD-ROM | disk | FTP | other *** search
- Path: sparky!uunet!cs.utexas.edu!usc!noiro.acs.uci.edu!beckman.com!dn66!a_rubin
- Newsgroups: sci.math
- Subject: Re: An interesting limit problem.
- Message-ID: <a_rubin.712451028@dn66>
- From: a_rubin@dsg4.dse.beckman.com (Arthur Rubin)
- Date: 29 Jul 92 23:03:48 GMT
- References: <1992Jul25.212844.1@lure.latrobe.edu.au><1992Jul25.201805.14172@husc3.harvard.edu> <VICTOR.92Jul29153236@terse4.watson.ibm.com>
- Nntp-Posting-Host: dn66.dse.beckman.com
- Lines: 19
-
- In <VICTOR.92Jul29153236@terse4.watson.ibm.com> victor@watson.ibm.com (Victor Miller) writes:
-
- >This problem is rather interesting, in that it is true in the
- >following general sense: let f and g be distinct elements of k[[x]]
- >(the power series ring, k is an arbitray field), which have 0 constant
- >term, and linear term x. Then the Laurent series
-
- > f(g(x)) - g(f(x))
- > -------------------------------------
- > f^{-1}(g^{-1}(x)) - g^{-1}(f^{-1}(x))
-
- >starts 1 + ...
-
- That is, assuming f(g(x)) != g(f(x)).
- --
- Arthur L. Rubin: a_rubin@dsg4.dse.beckman.com (work) Beckman Instruments/Brea
- 216-5888@mcimail.com 70707.453@compuserve.com arthur@pnet01.cts.com (personal)
- My opinions are my own, and do not represent those of my employer.
- Our news system is unstable; if you want to be sure I see a post, mail it.
-