home *** CD-ROM | disk | FTP | other *** search
/ NetNews Usenet Archive 1992 #16 / NN_1992_16.iso / spool / sci / engr / 1881 < prev    next >
Encoding:
Text File  |  1992-07-30  |  2.7 KB  |  60 lines

  1. Newsgroups: sci.engr
  2. Path: sparky!uunet!stanford.edu!kronos.arc.nasa.gov!iscnvx!news
  3. From: spiegel@sgi417.msd.lmsc.lockheed.com (Mark Spiegel)
  4. Subject: Re: Is there a continuity equation in elasticity
  5. Message-ID: <1992Jul30.180134.20278@iscnvx.lmsc.lockheed.com>
  6. Sender: news@iscnvx.lmsc.lockheed.com (News)
  7. Organization: Lockheed Missiles and Space Co.
  8. References: <14qp6nINNoqs@agate.berkeley.edu> <1992Jul27.141031.7047@cbfsb.cb.att.com>
  9. Date: Thu, 30 Jul 92 18:01:34 GMT
  10. Lines: 48
  11.  
  12. In article <1992Jul27.141031.7047@cbfsb.cb.att.com> rizzo@cbnewsf.cb.att.com (anthony.r.rizzo) writes:
  13.  
  14. >In article <14qp6nINNoqs@agate.berkeley.edu> jtrsmith@garnet.berkeley.edu () writes:
  15. >>Subject: Is there a continuity equation in elasticity?
  16. >>Hi, 
  17. >>I have a question on the governing equations of solid mechanics:
  18. >>Do we have continuity equation of mass in solid mechanics?
  19. >>Or it is not necessary, or is it implied in other governing equations?
  20. >>
  21. >>If possible, please reply to this account. Thanks.
  22. >>
  23. >>JTR Smith
  24. >
  25. >Elasticity texts refer to such equations as the "compatibility equations."
  26. >You should be able to find them, typically, in the first 50 pages
  27. >of most popular elasticity texts.
  28.  
  29.     Compatibility equations have absolutely nothing to do with
  30.     Conservation of Mass (continuity).  Compatibility equations
  31.     are only needed when in (classical) elasticity you are solving
  32.     a problem by selecting an assumed strain distribution.  Since
  33.     you have more equations than unknowns (in 3D 6 strain expressions
  34.     for only 3 displacements) it is likely that without additional
  35.     conditions, no displacement field corresponds to your assumed
  36.     strain field.  The compatibility equations (equality of mixed
  37.     partial derivatives) are the additional conditions that must be
  38.     satisfied by your assumed strain distribution.  If your elasticity
  39.     problem is formulated in terms of displacements, rather than
  40.     strains, no compatibility equations are needed.
  41.  
  42.     Conservaton of Mass (Continuity).  Typical elasticity problems
  43.     are formulated in terms of a material (Lagrangian) kinematic
  44.     description.  As such you are keeping track of all particles
  45.     of mass in your problem, and conservation of mass/continuity is
  46.     trivially/automatically satisfied.  If, alternatively, you
  47.     formulated your elasticity problem in terms of a spatial
  48.     (Eulerian) kinematic description (for REALLY large deformation
  49.     problems, for example), you end up with a conservation of 
  50.     mass/continuity equation just as you typically do in a
  51.     fluid mechanics formulation (which because of the very 
  52.     large deformations involved are invariably always spatial
  53.     formulations).  You would then have to solve both continuity
  54.     and balance of momenta equations for your elasticity problem.
  55.  
  56.         
  57.     Mark
  58.  
  59.  
  60.