home *** CD-ROM | disk | FTP | other *** search
- à 4.4èRectangles å Squares
- äèPLease answer ê followïg questions about rectangles
- å squares.
- â
-
- èèèè A rectangle is a parallelogram with four right angles.
-
- èèèèèè A square is a rectangle with four equal sides.è
- éS
-
- Defïition 4.1.4èRECTANGLE:èA rectangle is a parallelogram with four
- right angles.
-
- Defïition 4.1.5èSQUARE:èA square is a rectangle with four equal sides.
-
- Theorem 4.4.1èA parallelogram is a rectangle if å only if ê diago-
- nals are congruent.
- Proç: For a proç please see Problems 1 å 2.
-
- Theorem 4.4.2èThe segment joïïg ê midpoïts ç two sides ç a tri-
- angle is parallel ë ê third side å equal ë one-half ç it.
- Proç:èFor a proç please see Problems 3 å 4.
-
- è In ê last three sections we have accumulated some ïformation about
- quadrilaterals.èIt might be a good idea ë list êse properties for
- each type ç quadrilateral.
-
- 1. If ABCE is a parallelogram, ên:
- è a) Diagonals split ê parallelogram ïë two congruent triangles
- è b) Opposite sides are congruent
- è c) Opposite angles are congruent
- è d) Diagonals bisect each oêr
-
- 2. If ABCE is a rectangle, ên:
- è a) Diagonals split ê rectangle ïë two congruent triangles
- è b) Opposite sides are congruent
- è c) Opposite angles are congruent
- è d) Diagonals bisect each oêr
- è e) Diagonals are congruent
-
- 3. If ABCE is a rhombus, ên:
- è a) Diagonals split ê rhombus ïë two congruent triangles
- è b) Opposite sides are congruent
- è c) Opposite angles are congruent
- è d) Diagonals bisect each oêr
- è e) Diagonals are perpendicular
- è f) All sides are congruent
- è g) Diagonals bisect ê angles ç ê rhombus
-
- 4. If ABCE is a square, ên:
- è a) Diagonals split ê square ïë two congruent triangles
- è b) Opposite sides are congruent
- è c) Opposite angles are congruent
- è d) Diagonals bisect each oêr
- è e) Diagonals are congruent
- è f) Diagonals are perpendicular
- è g) Diagonals bisect angles ç ê square
- è h) All sides are congruent
-
- 1èèèIf ABCE is a rectangle, can you prove that ▒╖ ╧ ║┤?
-
-
-
-
-
- @fig4401.BMP,35,40,147,74èèèèèèA) Yesèèèè B) No
- ü Show ▒╖ ╧ ║┤
- Proç: Statementèèèèèèèèèèè Reason
- èèè 1. ABCE is a rectangleèèèèè1. Given
- èèè 2. ABCE is a parallelogramèèè2. Defïition ç rectangle
- èèè 3. ▒┤ ╧ ║╖èèèèèèèèèèè3. Opposite sides are congruent
- èèè 4. ▒║ ╧ ▒║èèèèèèèèèèè4. Congruence is reflexive
- èèè 5. ╬BAE, ╬CEA are right ╬sèèè5. Defïition ç rectangle
- èèè 6. ╬BAE ╧ ╬CEAèèèèèèèèè6. (14)All right ╬s are congruent
- èèè 7. ΦBAE ╧ ΦCEAèèèèèèèèè7. Congruent by SAS
- èèè 8. ┤║ ╧ ╖▒èèèèèèèèèèè8. Correspondïg parts çè
- èèèèèèèèèèèèèèèèèèèèèècongruent Φs
- Ç A
- 2èèèèèèèèIf ABCE is a parallelogram with ▒╖ ╧ ┤║,
- èèèèèèèèèèèè can you prove that ABCE is a rectangle?è
-
-
-
-
- @fig4401.BMP,35,40,147,74èèèèèèA) Yesèèèè B) No
- ü Show ABCE is a rectangle
- Proç: Statementèèèèèèèèè Reason
- èèè 1. ABCE is a ⌠⌡èèèèèè1. Given
- èèè 2. ▒╖ ╧ ┤║èèèèèèèè 2. Given
- èèè 3. ┤▒ ╧ ╖║èèèèèèèè 3. Opposite sides are congruent
- èèè 4. ▒║ ╧ ▒║èèèèèèèè 4. Congruence is reflexive
- èèè 5. ΦBAE ╧ ΦCEAèèèèèè 5. Congruent by SSS
- èèè 6. ╬BAE ╧ ╬CEAèèèèèè 6. Correspondïg parts ç congruent Φs
- èèè 7. ╬BAE, ╬CEA are sup.èè 7. Consecutive ╬s are supplementaryèèèèèè
- èèè 8. m╬BAE + m╬CEA = 180°èè8. Defïition ç supplementaryè
- èèè 9. 2m╬BAE = 180°èèèèè 9. Substitution
- èèè10. m╬BAE = 90°èèèèèè10. Multiplication axiom for equations
- èèè11. ╬BAE, ╬CEA are rt.╬sè 11. Defïition ç right anglesèèèèèè
- èèè12. ╬ABC, ╬ECB are rt.╬sè 12. Similar argument
- èèè13. ABCE is a rectangleèè13. Def. ç rectangleè
- Ç A
- 3èèèèèèèèèèIf E å H are midpoïts ç ▒┤ å ┤╖,
- èèèèèèèèèèèèèè can you prove that ║╜ ▀ ▒╖?è
-
-
-
-
- @fig4402.BMP,35,40,147,74èèèèèèA) Yesèèèè B) No
- ü Show ║╜ ▀ ▒╖
- Proç: StatementèèèèèèèèèReason
- èèè 1. E, H midpoïts çèèè 1. Given
- èèèèèè▒┤, ┤╖
- èèè 2. BE = EA, BH = HCèèèè2. Defïition ç midpoït
- èèè 3. EH = HPèèèèèèèè 3. Given
- èèè 4. ╬2 ╧ ╬3èèèèèèèè 4. Vertical angles
- èèè 5. ΦBEH ╧ ΦCPHèèèèèè 5. Congruent by SAS
- èèè 6. ║┤ ╧ └╖èèèèèèèè 6. Correspondïg parts ç congruent Φs
- èèè 7. └╖ ╧ ║▒èèèèèèèè 7. Transitive axiom
- èèè 8. ╬1 ╧ ╬4èèèèèèèè 8. Correspondïg parts ç congruent Φsè
- èèè 9. ║▒ ▀ ╖└èèèèèèèè 9. Alternate ïterior ╬s are congruent
- èèè10. AEPC is a ⌠⌡èèèèè 10. Two sides are ▀ å congruent
- èèè11. ║╜ ▀ ▒╖èèèèèèèè11. Defïition ç ⌠⌡
- Ç A
- 4èèèèèèèèèèIf E å H are midpoïts ç ▒┤ å ┤╖,
- èèèèèèèèèèèèèè can you prove that EH = 1/2AC?è
-
-
-
-
- @fig4402.BMP,35,40,147,74èèèèèèA) Yesèèèè B) No
- ü Show EH = 1/2AC
- Proç: StatementèèèèèèèèReason
- èèè 1. AEPH is a ⌠⌡èèèèè1. Problem 3
- èèè 2. EP = ACèèèèèèè 2. Opposite sides congruent
- èèè 3. EP = EH + HPèèèèè3. (8)Segment addition axiom
- èèè 4. EP = EH + EHèèèèè4. Substitution
- èèè 5. EP = 2EHèèèèèèè5. Distributive axiom
- èèè 6. AC = 2EHèèèèèèè6. Substitution axiom
- èèè 7. 1/2AC = EHèèèèèè7. Multiplication axiom for equations
- Ç A
- 5èèèèèèèèèè If ABCE is a rectangle, m╬BEA = 45°,è
- èèèèèèèèèèèèèèèå BA = 9, fïd ê length ç ┤╖.
-
-
-
-
- @fig4401.BMP,35,40,147,74èèèèèA) 9èèèèB) 18èèèèC) 24
- ü Show BC = 9
- Proç: StatementèèèèèèèèèReason
- èèè 1. m╬BEA = 45°, BA = 9èè 1. Given
- èèè 2. ╬AEC is a right ╬èèè 2. Defïition ç Ωδ
- èèè 3. 45° + m╬BEC = 90°èèè 3. (12)Angle addition axiom
- èèè 4. m╬BEC = 45°èèèèèè 4. Addition axiom for equations
- èèè 5. 45° = ╬ABE, ╬CBEèèèè5. Alternate ïterior ╬s are congruent
- èèè 6. ΦABE ╧ ΦECAèèèèèè 6. Congruent by SAS
- èèè 7. m╬CAE = m╬BEA = 45°èè 7. Corres. parts
- èèè 8. m╬BAC=m╬BCA=m╬AEC=45°è 8. Argument similar ë 1-5 above
- èèè 9. Diagonals bisect opp.╬è9. Defïition ç bisectèèèèèè
- èèè10. ABCE is a rhombusèèè10. Diagonals bisect opposite angles
- èèè11. All sides are equalèè11. Defïition ç rhombus
- èèè12. BC = BAèèèèèèèè12. Defïiiën ç equal sides
- èèè13. BC = 9èèèèèèèè 13. Substitution
- Ç A
-
-
-
-
-
-