home *** CD-ROM | disk | FTP | other *** search
- à 4.3èRhombuses
- INSTRUCIONSèPlease answer ê followïg questions about rhombuses.
- âè
-
-
- èèèèèA rhombus is a parallelogram with four equal sides.
- éS
-
- Defïition 4.1.3èRHOMBUS:èA rhombus is a parallelogram with four equal
- sides.
-
- Sïce a rhombus is a parallelogram, it has all ê properties ç a par-
- allelogram.èTherefore, all ç ê êorems ï ê last section on par-
- allelograms are true for rhombuses as well.èIn addition ë ê general
- parallelogram properties, a rhombus has all four sides equal by defïi-
- tion.èThe followïg êorms list two additional properties ç a rhom-
- bus.
-
- Theorem 4.3.1èA parallelogram is a rhombus if å only if ê diagonals
- are perpendicular.
- Proç: For a proç please see Problems 1 å 2.
-
- Theorem 4.3.2èA parallelogram is a rhombus if å only if ê diagonals
- bisect opposite angles.
- Proç: For a proç please see Problems 3 å 4.
-
- 1èèèèèèèèèèèè If ABCE is a rhombus, can you prove
- èèèèèèèèèèèèèèèèèthat ê diagonals are perpendicular?
-
-
-
-
- @fig4301.BMP,35,40,147,74èèèèèèèèA) Yesèèèè B) No
- ü Show ┤║ ß ▒╖
- Proç: Statementèèèèèèèè Reason
- èèè 1. ABCE is a rhombusèèè1. Given
- èèè 2. ┤╖ ╧ ╖║èèèèèèèè2. Defïition ç a rhombus
- èèè 3. ┤└ ╧ ║└èèèèèèèè3. Diagonals ç a parallelogram bisect
- èèè 4. └╖ ╧ └╖èèèèèèèè4. Congruence is reflexive
- èèè 5. ΦBCP ╧ ΦECPèèèèèè5. Congruent by SSS
- èèè 6. ╬1 ╧ ╬2èèèèèèèè6. Correspondïg parts ç congruent Φs
- èèè 7. ╬1 + ╬2 = 180°èèèè 7. Lïear pairs are supplemental
- èèè 8. 2╬1 = 180°èèèèèè 8. Distributive axiom
- èèè 9. ╬1 = 90°èèèèèèè 9. Multiplication axiom for equations
- èèè10. ┤║ ß ▒╖èèèèèèè 10. Defïition ç perpendicular
- Ç A
- 2èèèèèèèèèè If ABCE is a parallelogram with ┤║ ß ▒╖,
- èèèèèèèèèèèèèèècan you prove that ABCE is a rhombus?
-
-
-
-
- @fig4301.BMP,35,40,147,74èèèèèèèèA) Yesèèèè B) No
- ü Show ABCE is a rhombus
- Proç: StatementèèèèèèèèèReason
- èèè 1. ABCE is a ⌠⌡èèèèèè1. Given
- èèè 2. ┤║ ß ▒╖èèèèèèèè 2. Given
- èèè 3. ╬1, ╬2 are right ╬sèè 3. Defïition ç perpendicular
- èèè 4. ╬1 ╧ ╬2èèèèèèèè 4. (14)All right ╬s are congruent
- èèè 5. ┤║ ╧ └║èèèèèèèè 5. Diagonals parall. bisect each oêr
- èèè 6. └╖ ╧ └╖èèèèèèèè 6. Congruence is reflexive
- èèè 7. ΦBPC ╧ ΦEPCèèèèèè 7. Congruent by SAS
- èèè 8. ┤╖ ╧ ╖║èèèèèèèè 8. Correspondïg parts ç congruent Φs
- èèè 9. ┤╖ ╧ ▒║, ╖║ ╧ ▒┤èèèè9. Opposite sides ç ⌠⌡ are equal
- èèè10. ABCE is a rhombusèèè10. Defïition ç rhombus
- Ç A
- 3èèèèèèèèèèè If ABCE is a rhombus, can you prove
- èèèèèèèèèèèèèèèèthat ▒╖ bisects ╬BCE å ╬BAE?
-
-
-
-
- @fig4302.BMP,35,40,147,74èèèèèèèèA) Yesèèèè B) No
- ü Show ▒╖ bisects ╬BCE å ╬BAE
- Proç: StatementèèèèèèèèèReason
- èèè 1. ABCE is a rhombusèèè 1. Given
- èèè 2. ▒╖ ß ┤║èèèèèèèè 2. Problem 1
- èèè 3. ╬BPC, ╬EPC areèèèèè3. Defïition ç perpendicular
- èèèèèèright angles
- èèè 4. ╬BPC ╧ ╬EPCèèèèèè 4. (14)All right ╬s are congruent
- èèè 5. ┤└ ╧ └║èèèèèèèè 5. Diagonals bisect each oêr
- èèè 6. └╖ ╧ └╖èèèèèèèè 6. Congruence is reflexive
- èèè 7. ΦBPC ╧ ΦEPCèèèèèè 7. Congruent by SAS
- èèè 8. ╬3 ╧ ╬4èèèèèèèè 8. Correspondïg parts ç congruent Φs
- èèè 9. ▒╖ bisects ╬BCEèèèè 9. Defïition ç bisects
- èèè10. ▒╖ bisects ╬BAEèèèè10. Similar argument 1-9
- Ç A
- 4èèèèèèèèèèèIf ABCE is a parallelogram such that ê
- èèèèèèèèèèèèèèè diagonals bisect each oêr, can youè
- èèèèèèèèèèèèèèè prove that ABCE is a rhombus?
-
-
-
- @fig4302.BMP,35,40,147,74èèèèèèèèA) Yesèèèè B) No
- ü Show that ABCE is a rhombus
- Proç: StatementèèèèèèèèèèReason
- èèè 1. ABCE is a ⌠⌡èèèèèèè1. Given
- èèè 2. ▒╖ bisects ╬BCE å ╬BAEè2. Givenèèèèèè
- èèè 3. ╬3 ╧ ╬4èèèèèèèèè 3. Defïition ç bisects
- èèè 4. └╖ ╧ └╖èèèèèèèèè 4. Congruence is reflexive
- èèè 5. ┤║ bisects ╬ABC å ╬AECè5. Given
- èèè 6. m╬ABE= m╬EBC,m╬CEB=m╬BEAè6. Def. ç bisectsèèè
- èèè 7. ╬ABC ╧ ╬AECèèèèèèè 7. Opp. ╬s ï a ⌠⌡ are congruent
- èèè 8. m╬ABC = m╬AECèèèèèè 8. Defïition ç congruent
- èèè 9. m╬ABE+m╬EBC=m╬CEB+m╬BEAè 9. Angle addition axiom
- èèè10. 2m╬EBC = 2m╬CEBèèèèè10. Substitution from lïe 6
- èèè11. ╬EBC ╧ ╬CEBèèèèèèè11. Mult. axiom å def. ç congr.
- èèè12. ΦBPC ╧ ΦEPCèèèèèèè12. Congruent by Theorem 3.5.5
- èèè13. ┤╖ ╧ ║╖,ABCE is rhombusè13. Cor. parts å opp.sides equalèèèèèèèèèèèèèèèèèèèèèèèèèè
- Ç A
- 5èèèèèèèèèèèèIf ABCE is a rhombus, can you proveè
- èèèèèèèèèèèèèèèè that ╬1 å ╬2 are complementary?
- èèèèèèèèèèèè
-
-
-
- @fig4303.BMP,35,40,147,74èèèèèèèèA) Yesèèèè B) No
- ü Show ╬1 å ╬2 are complementary
- Proç: Statementèèèèèèèèèèè Reason
- èèè 1. ABCE is a rhombusèèèèèè1. Given
- èèè 2. ▒╖ ß ┤║èèèèèèèèèèè2. Diagonals ß ï a rhombus
- èèè 3. ╬BPC is a right ╬èèèèèè3. Defïition ç perpendicular
- èèè 4. m╬BPC = 90°èèèèèèèèè4. Defïition ç right angle
- èèè 5. m╬1 + m╬2 + 90° = 180°èèè 5. Sum ç ïterior ╬s is 180°
- èèè 6. m╬1 + m╬2 = 90°èèèèèèè6. Addition axiom for equations
- èèè 7. ╬1 å ╬2 areèèèèèèèè7. Defïition ç complementary
- èèèèèècomplementary
- Ç A
- 6
-
- èèèèèèèèèè Every parallelogram is a rhombus.
-
-
- èèèèèèèèèèèA) TrueèèèèèèèèB) False
- ü
-
-
- èThis statement is false, sïce not all parallelograms are rhombuses.
- Ç B
- 7
-
- èèèèèèèThe diagonals ç a rhombus are perpendicular.
-
-
- èèèèèèèèèèèA) TrueèèèèèèèèB) False
- ü
-
-
- èèèèèèè True.èThis is ê statement ç Theorem 4.3.1.
- Ç A
- 8
-
- èèèèèèA parallelogram with congruent sides is a rhombus.
-
-
- èèèèèèèèèèèA) TrueèèèèèèèèB) False
- ü
-
-
- èèèèèèèèèèèèèèèè Trueè
- Ç A
- 9
-
- èèèèèèèè The diagonals ç a rhombus are congruent.
-
-
- èèèèèèèèèèèA) TrueèèèèèèèèB) False
- ü
-
-
- èèèThe diagonals ç a rhombus are perpendicular but not congruent.è
- Ç B
- 10
-
- èèè The diagonals ç a parallelogram are always perpendicular.
-
-
- èèèèèèèèèèèA) TrueèèèèèèèèB) False
- ü
-
- èèèèèèè The diagonals ç a parallelogram are never
- èèèèèèèèèperpendicular unless it is a rhombus.
- Ç B
- 11èèèèèèèèèèèè If ABCE is a rhombus, m╬ABP = 60°,
- èèèèèèèèèèèèèèèèè å CE = 10, fïd ê length ç ┤║.
-
-
-
-
- @fig4304.BMP,35,40,147,74èèè A) 9√2èèèèB) 10èèèèC) 8/√3
- ü Show BE = 10
- Proç: Statementèèèèèèèèèèè Reason
- èèè 1. m╬ABP = 60°, CE = 10èèèè 1. Given
- èèè 2. m╬BPA = 90°èèèèèèèèè2. Diagonals ï rhombuses are
- èèèèèèèèèèèèèèèèèèèèèèright angles
- èèè 3. m╬BAP + 60° + 90° = 180°èè 3. Sum ç ïterior ╬s ï a Φ
- èèèèèèèèèèèèèèèèèèèèèèis 180°
- èèè 4. m╬BAP = 30°èèèèèèèèè4. Addition axiom for equations
- èèè 5. m╬BAE = 60°èèèèèèèèè5. Diagonals bisect opposite ╬s
- èèè 6. 60° + 60° + ╬BEA = 180°èèè6. Sum ç ╬s ï a Φ is 180°
- èèè 7. ╬BEA = 60°èèèèèèèèè 7. Addition axiom for equations
- èèè 8. ΦBAE is equiangularèèèèè8. Defïition ç equiangular
- èèè 9. ΦBAE is equilateralèèèèè9. Equiangular if equilateral
- èèè10. AB = 10èèèèèèèèèè 10. Opposite sides are equal
- èèè11. BE = 10èèèèèèèèèè 11. Defïition ç equilateral Φs
- Ç B
-
-
-
-
-