home *** CD-ROM | disk | FTP | other *** search
open in:
MacOS 8.1
|
Win98
|
DOS
browse contents |
view JSON data
|
view as text
This file was processed as: LaTeX Document
(document/latex).
Confidence | Program | Detection | Match Type | Support
|
---|
100%
| dexvert
| LaTeX Document (document/latex)
| magic
| Supported |
100%
| dexvert
| Texinfo Document (document/texInfo)
| magic
| Supported |
1%
| dexvert
| Corel 10 Texture (image/corel10Texture)
| ext
| Unsupported |
1%
| dexvert
| Text File (text/txt)
| fallback
| Supported |
100%
| file
| LaTeX 2e document text
| default
| |
99%
| file
| LaTeX document text
| default
| |
98%
| file
| TeX document text
| default
| |
97%
| file
| LaTeX document, ASCII text, with CRLF line terminators
| default
| |
100%
| TrID
| LaTeX 2e document (with rem)
| default
| |
100%
| checkBytes
| Printable ASCII
| default
| |
100%
| perlTextCheck
| Likely Text (Perl)
| default
| |
100%
| siegfried
| fmt/280 LaTeX (Master document)
| default
| |
100%
| detectItEasy
| Format: Plain text[CRLF]
| default
| |
100%
| xdgMime
| text/x-matlab
| default (weak)
|
|
hex view+--------+-------------------------+-------------------------+--------+--------+
|00000000| 25 25 20 54 68 69 73 20 | 64 6f 63 75 6d 65 6e 74 |%% This |document|
|00000010| 20 63 72 65 61 74 65 64 | 20 62 79 20 53 63 69 65 | created| by Scie|
|00000020| 6e 74 69 66 69 63 20 4e | 6f 74 65 62 6f 6f 6b 20 |ntific N|otebook |
|00000030| 28 52 29 20 56 65 72 73 | 69 6f 6e 20 33 2e 30 0d |(R) Vers|ion 3.0.|
|00000040| 0a 0d 0a 0d 0a 5c 64 6f | 63 75 6d 65 6e 74 63 6c |.....\do|cumentcl|
|00000050| 61 73 73 5b 31 32 70 74 | 2c 74 68 6d 73 61 5d 7b |ass[12pt|,thmsa]{|
|00000060| 61 72 74 69 63 6c 65 7d | 0d 0a 25 25 25 25 25 25 |article}|..%%%%%%|
|00000070| 25 25 25 25 25 25 25 25 | 25 25 25 25 25 25 25 25 |%%%%%%%%|%%%%%%%%|
|00000080| 25 25 25 25 25 25 25 25 | 25 25 25 25 25 25 25 25 |%%%%%%%%|%%%%%%%%|
|00000090| 25 25 25 25 25 25 25 25 | 25 25 25 25 25 25 25 25 |%%%%%%%%|%%%%%%%%|
|000000a0| 25 25 25 25 25 25 25 25 | 25 25 25 25 25 25 25 25 |%%%%%%%%|%%%%%%%%|
|000000b0| 25 25 25 25 25 25 25 25 | 25 25 25 25 25 25 25 25 |%%%%%%%%|%%%%%%%%|
|000000c0| 25 25 25 25 25 25 25 25 | 25 25 25 25 25 25 25 25 |%%%%%%%%|%%%%%%%%|
|000000d0| 25 25 25 25 25 25 25 25 | 25 25 25 25 25 25 25 25 |%%%%%%%%|%%%%%%%%|
|000000e0| 25 25 25 25 25 25 0d 0a | 5c 75 73 65 70 61 63 6b |%%%%%%..|\usepack|
|000000f0| 61 67 65 7b 73 77 32 30 | 6a 61 72 74 7d 0d 0a 0d |age{sw20|jart}...|
|00000100| 0a 25 54 43 49 44 41 54 | 41 7b 54 43 49 73 74 79 |.%TCIDAT|A{TCIsty|
|00000110| 6c 65 3d 61 72 74 69 63 | 6c 65 2f 61 72 74 34 2e |le=artic|le/art4.|
|00000120| 6c 61 74 2c 6a 61 72 74 | 2c 73 77 32 30 6a 61 72 |lat,jart|,sw20jar|
|00000130| 74 7d 0d 0a 0d 0a 25 54 | 43 49 44 41 54 41 7b 3c |t}....%T|CIDATA{<|
|00000140| 4d 45 54 41 20 4e 41 4d | 45 3d 22 56 69 65 77 53 |META NAM|E="ViewS|
|00000150| 65 74 74 69 6e 67 73 22 | 20 43 4f 4e 54 45 4e 54 |ettings"| CONTENT|
|00000160| 3d 22 32 33 22 3e 7d 0d | 0a 25 54 43 49 44 41 54 |="23">}.|.%TCIDAT|
|00000170| 41 7b 3c 4d 45 54 41 20 | 4e 41 4d 45 3d 22 47 72 |A{<META |NAME="Gr|
|00000180| 61 70 68 69 63 73 53 61 | 76 65 22 20 43 4f 4e 54 |aphicsSa|ve" CONT|
|00000190| 45 4e 54 3d 22 33 32 22 | 3e 7d 0d 0a 25 54 43 49 |ENT="32"|>}..%TCI|
|000001a0| 44 41 54 41 7b 3c 4d 45 | 54 41 20 4e 41 4d 45 3d |DATA{<ME|TA NAME=|
|000001b0| 22 54 69 74 6c 65 22 20 | 43 4f 4e 54 45 4e 54 3d |"Title" |CONTENT=|
|000001c0| 22 52 65 66 65 72 65 6e | 63 65 2f 4d 61 74 68 65 |"Referen|ce/Mathe|
|000001d0| 6d 61 74 69 63 73 2f 53 | 75 72 66 61 63 65 20 41 |matics/S|urface A|
|000001e0| 72 65 61 22 3e 7d 0d 0a | 25 54 43 49 44 41 54 41 |rea">}..|%TCIDATA|
|000001f0| 7b 43 72 65 61 74 65 64 | 3d 4d 6f 6e 20 41 75 67 |{Created|=Mon Aug|
|00000200| 20 31 39 20 31 34 3a 35 | 32 3a 32 34 20 31 39 39 | 19 14:5|2:24 199|
|00000210| 36 7d 0d 0a 25 54 43 49 | 44 41 54 41 7b 4c 61 73 |6}..%TCI|DATA{Las|
|00000220| 74 52 65 76 69 73 65 64 | 3d 53 75 6e 20 4d 61 72 |tRevised|=Sun Mar|
|00000230| 20 33 30 20 31 34 3a 32 | 30 3a 35 31 20 31 39 39 | 30 14:2|0:51 199|
|00000240| 37 7d 0d 0a 25 54 43 49 | 44 41 54 41 7b 4c 61 6e |7}..%TCI|DATA{Lan|
|00000250| 67 75 61 67 65 3d 41 6d | 65 72 69 63 61 6e 20 45 |guage=Am|erican E|
|00000260| 6e 67 6c 69 73 68 7d 0d | 0a 25 54 43 49 44 41 54 |nglish}.|.%TCIDAT|
|00000270| 41 7b 43 53 54 46 69 6c | 65 3d 52 65 66 65 72 65 |A{CSTFil|e=Refere|
|00000280| 6e 63 65 2e 63 73 74 7d | 0d 0a 25 54 43 49 44 41 |nce.cst}|..%TCIDA|
|00000290| 54 41 7b 50 61 67 65 53 | 65 74 75 70 3d 37 32 2c |TA{PageS|etup=72,|
|000002a0| 37 32 2c 37 32 2c 37 32 | 2c 30 7d 0d 0a 25 54 43 |72,72,72|,0}..%TC|
|000002b0| 49 44 41 54 41 7b 3c 4c | 49 4e 4b 20 52 45 4c 3d |IDATA{<L|INK REL=|
|000002c0| 22 63 6f 6e 74 65 6e 74 | 73 22 20 48 52 45 46 3d |"content|s" HREF=|
|000002d0| 22 2e 2e 5c 2e 2e 5c 52 | 65 66 65 72 65 6e 63 65 |"..\..\R|eference|
|000002e0| 5c 52 65 66 65 72 65 6e | 63 65 49 6e 64 65 78 2e |\Referen|ceIndex.|
|000002f0| 74 65 78 23 52 65 66 65 | 72 65 6e 63 65 20 49 6e |tex#Refe|rence In|
|00000300| 64 65 78 22 3e 7d 0d 0a | 25 54 43 49 44 41 54 41 |dex">}..|%TCIDATA|
|00000310| 7b 3c 4c 49 4e 4b 20 52 | 45 4c 3d 22 6e 65 78 74 |{<LINK R|EL="next|
|00000320| 22 20 48 52 45 46 3d 22 | 56 45 43 30 36 5f 30 31 |" HREF="|VEC06_01|
|00000330| 2e 74 65 78 22 3e 7d 0d | 0a 25 54 43 49 44 41 54 |.tex">}.|.%TCIDAT|
|00000340| 41 7b 3c 4c 49 4e 4b 20 | 52 45 4c 3d 22 70 61 72 |A{<LINK |REL="par|
|00000350| 65 6e 74 22 20 48 52 45 | 46 3d 22 56 65 63 5f 63 |ent" HRE|F="Vec_c|
|00000360| 6f 6e 74 65 6e 74 73 2e | 74 65 78 22 3e 7d 0d 0a |ontents.|tex">}..|
|00000370| 25 54 43 49 44 41 54 41 | 7b 3c 4c 49 4e 4b 20 52 |%TCIDATA|{<LINK R|
|00000380| 45 4c 3d 22 70 72 65 76 | 69 6f 75 73 22 20 48 52 |EL="prev|ious" HR|
|00000390| 45 46 3d 22 56 45 43 30 | 34 5f 30 31 2e 74 65 78 |EF="VEC0|4_01.tex|
|000003a0| 22 3e 7d 0d 0a 25 54 43 | 49 44 41 54 41 7b 41 6c |">}..%TC|IDATA{Al|
|000003b0| 6c 50 61 67 65 73 3d 0d | 0a 25 46 3d 33 36 2c 5c |lPages=.|.%F=36,\|
|000003c0| 50 41 52 41 7b 30 33 38 | 3c 70 20 74 79 70 65 3d |PARA{038|<p type=|
|000003d0| 22 74 65 78 70 61 72 61 | 22 20 74 61 67 3d 22 42 |"texpara|" tag="B|
|000003e0| 6f 64 79 20 54 65 78 74 | 22 20 3e 5c 68 66 69 6c |ody Text|" >\hfil|
|000003f0| 6c 20 5c 74 68 65 70 61 | 67 65 7d 0d 0a 25 7d 0d |l \thepa|ge}..%}.|
|00000400| 0a 0d 0a 0d 0a 5c 69 6e | 70 75 74 7b 74 63 69 6c |.....\in|put{tcil|
|00000410| 61 74 65 78 7d 0d 0a 5c | 62 65 67 69 6e 7b 64 6f |atex}..\|begin{do|
|00000420| 63 75 6d 65 6e 74 7d 0d | 0a 0d 0a 0d 0a 5c 73 65 |cument}.|.....\se|
|00000430| 63 74 69 6f 6e 7b 53 75 | 72 66 61 63 65 20 41 72 |ction{Su|rface Ar|
|00000440| 65 61 20 5c 6c 61 62 65 | 6c 7b 53 75 72 66 61 63 |ea \labe|l{Surfac|
|00000450| 65 20 41 72 65 61 7d 7d | 0d 0a 0d 0a 5c 73 75 62 |e Area}}|....\sub|
|00000460| 73 75 62 73 65 63 74 69 | 6f 6e 7b 41 72 65 61 73 |subsecti|on{Areas|
|00000470| 20 6f 66 20 50 61 72 61 | 6d 65 74 72 69 63 20 53 | of Para|metric S|
|00000480| 75 72 66 61 63 65 73 7d | 0d 0a 0d 0a 5c 62 65 67 |urfaces}|....\beg|
|00000490| 69 6e 7b 69 74 65 6d 69 | 7a 65 7d 0d 0a 5c 69 74 |in{itemi|ze}..\it|
|000004a0| 65 6d 20 20 4a 75 73 74 | 20 61 73 20 61 20 73 70 |em Just| as a sp|
|000004b0| 61 63 65 20 63 75 72 76 | 65 20 69 73 20 64 65 73 |ace curv|e is des|
|000004c0| 63 72 69 62 65 64 20 62 | 79 20 61 20 76 65 63 74 |cribed b|y a vect|
|000004d0| 6f 72 20 66 75 6e 63 74 | 69 6f 6e 20 24 5c 6d 61 |or funct|ion $\ma|
|000004e0| 74 68 62 66 7b 72 7d 25 | 0d 0a 5c 6c 65 66 74 28 |thbf{r}%|..\left(|
|000004f0| 20 74 5c 72 69 67 68 74 | 29 20 24 20 6f 66 20 6f | t\right|) $ of o|
|00000500| 6e 65 20 70 61 72 61 6d | 65 74 65 72 2c 20 61 20 |ne param|eter, a |
|00000510| 73 75 72 66 61 63 65 20 | 69 73 20 64 65 73 63 72 |surface |is descr|
|00000520| 69 62 65 64 20 62 79 20 | 61 20 76 65 63 74 6f 72 |ibed by |a vector|
|00000530| 0d 0a 66 75 6e 63 74 69 | 6f 6e 20 6f 66 20 74 77 |..functi|on of tw|
|00000540| 6f 20 70 61 72 61 6d 65 | 74 65 72 73 2e 20 4c 65 |o parame|ters. Le|
|00000550| 74 20 24 53 24 20 64 65 | 6e 6f 74 65 20 61 20 73 |t $S$ de|note a s|
|00000560| 75 72 66 61 63 65 20 67 | 69 76 65 6e 20 62 79 20 |urface g|iven by |
|00000570| 74 68 65 20 76 65 63 74 | 6f 72 0d 0a 65 71 75 61 |the vect|or..equa|
|00000580| 74 69 6f 6e 20 0d 0a 5c | 5b 0d 0a 5c 6d 61 74 68 |tion ..\|[..\math|
|00000590| 62 66 7b 72 7d 5c 6c 65 | 66 74 28 20 75 2c 76 5c |bf{r}\le|ft( u,v\|
|000005a0| 72 69 67 68 74 29 20 3d | 78 5c 6c 65 66 74 28 20 |right) =|x\left( |
|000005b0| 75 2c 76 5c 72 69 67 68 | 74 29 20 5c 6d 61 74 68 |u,v\righ|t) \math|
|000005c0| 62 66 7b 69 7d 2b 79 5c | 6c 65 66 74 28 0d 0a 75 |bf{i}+y\|left(..u|
|000005d0| 2c 76 5c 72 69 67 68 74 | 29 20 5c 6d 61 74 68 62 |,v\right|) \mathb|
|000005e0| 66 7b 6a 7d 2b 7a 5c 6c | 65 66 74 28 20 75 2c 76 |f{j}+z\l|eft( u,v|
|000005f0| 5c 72 69 67 68 74 29 20 | 5c 6d 61 74 68 62 66 7b |\right) |\mathbf{|
|00000600| 6b 7d 5c 71 71 75 61 64 | 20 5c 6c 65 66 74 28 20 |k}\qquad| \left( |
|00000610| 75 2c 76 5c 72 69 67 68 | 74 29 0d 0a 5c 69 6e 20 |u,v\righ|t)..\in |
|00000620| 44 5c 74 65 78 74 7b 2e | 7d 0d 0a 5c 5d 0d 0a 41 |D\text{.|}..\]..A|
|00000630| 73 73 75 6d 65 20 74 68 | 61 74 20 74 68 65 20 70 |ssume th|at the p|
|00000640| 61 72 74 69 61 6c 20 64 | 65 72 69 76 61 74 69 76 |artial d|erivativ|
|00000650| 65 73 20 6f 66 20 24 78 | 24 2c 20 24 79 24 2c 20 |es of $x|$, $y$, |
|00000660| 61 6e 64 20 24 7a 24 20 | 77 69 74 68 20 72 65 73 |and $z$ |with res|
|00000670| 70 65 63 74 20 74 6f 20 | 24 75 24 0d 0a 61 6e 64 |pect to |$u$..and|
|00000680| 20 24 76 24 20 61 72 65 | 20 61 6c 6c 20 63 6f 6e | $v$ are| all con|
|00000690| 74 69 6e 75 6f 75 73 2e | 0d 0a 0d 0a 5c 69 74 65 |tinuous.|....\ite|
|000006a0| 6d 20 20 49 66 20 79 6f | 75 20 66 69 78 20 6f 6e |m If yo|u fix on|
|000006b0| 65 20 6f 66 20 74 68 65 | 20 70 61 72 61 6d 65 74 |e of the| paramet|
|000006c0| 65 72 73 20 61 6e 64 20 | 6c 65 74 20 74 68 65 20 |ers and |let the |
|000006d0| 6f 74 68 65 72 20 76 61 | 72 79 2c 20 79 6f 75 20 |other va|ry, you |
|000006e0| 67 65 74 20 61 0d 0a 73 | 70 61 63 65 20 63 75 72 |get a..s|pace cur|
|000006f0| 76 65 20 74 68 61 74 20 | 6c 69 65 73 20 69 6e 20 |ve that |lies in |
|00000700| 74 68 65 20 73 75 72 66 | 61 63 65 2e 20 5c 20 54 |the surf|ace. \ T|
|00000710| 68 65 20 76 65 63 74 6f | 72 73 5c 71 75 61 64 5c |he vecto|rs\quad\|
|00000720| 20 0d 0a 5c 5b 0d 0a 5c | 6d 61 74 68 62 66 7b 72 | ..\[..\|mathbf{r|
|00000730| 7d 5f 7b 75 7d 3d 5c 66 | 72 61 63 7b 5c 70 61 72 |}_{u}=\f|rac{\par|
|00000740| 74 69 61 6c 20 78 7d 7b | 5c 70 61 72 74 69 61 6c |tial x}{|\partial|
|00000750| 20 75 7d 5c 6d 61 74 68 | 62 66 7b 69 7d 2b 5c 66 | u}\math|bf{i}+\f|
|00000760| 72 61 63 7b 5c 70 61 72 | 74 69 61 6c 20 79 7d 7b |rac{\par|tial y}{|
|00000770| 25 0d 0a 5c 70 61 72 74 | 69 61 6c 20 75 7d 5c 6d |%..\part|ial u}\m|
|00000780| 61 74 68 62 66 7b 6a 7d | 2b 5c 66 72 61 63 7b 5c |athbf{j}|+\frac{\|
|00000790| 70 61 72 74 69 61 6c 20 | 79 7d 7b 5c 70 61 72 74 |partial |y}{\part|
|000007a0| 69 61 6c 20 75 7d 5c 6d | 61 74 68 62 66 7b 6a 5c |ial u}\m|athbf{j\|
|000007b0| 71 75 61 64 20 7d 5c 74 | 65 78 74 7b 61 6e 64 7d |quad }\t|ext{and}|
|000007c0| 25 0d 0a 5c 71 75 61 64 | 20 5c 6d 61 74 68 62 66 |%..\quad| \mathbf|
|000007d0| 7b 72 7d 5f 7b 76 7d 3d | 5c 66 72 61 63 7b 5c 70 |{r}_{v}=|\frac{\p|
|000007e0| 61 72 74 69 61 6c 20 78 | 7d 7b 5c 70 61 72 74 69 |artial x|}{\parti|
|000007f0| 61 6c 20 76 7d 5c 6d 61 | 74 68 62 66 7b 69 7d 2b |al v}\ma|thbf{i}+|
|00000800| 5c 66 72 61 63 7b 5c 70 | 61 72 74 69 61 6c 20 79 |\frac{\p|artial y|
|00000810| 25 0d 0a 7d 7b 5c 70 61 | 72 74 69 61 6c 20 76 7d |%..}{\pa|rtial v}|
|00000820| 5c 6d 61 74 68 62 66 7b | 6a 7d 2b 5c 66 72 61 63 |\mathbf{|j}+\frac|
|00000830| 7b 5c 70 61 72 74 69 61 | 6c 20 79 7d 7b 5c 70 61 |{\partia|l y}{\pa|
|00000840| 72 74 69 61 6c 20 76 7d | 5c 6d 61 74 68 62 66 7b |rtial v}|\mathbf{|
|00000850| 6a 7d 0d 0a 5c 5d 0d 0a | 61 72 65 20 74 61 6e 67 |j}..\]..|are tang|
|00000860| 65 6e 74 73 20 74 6f 20 | 74 68 65 73 65 20 60 60 |ents to |these ``|
|00000870| 63 6f 6f 72 64 69 6e 61 | 74 65 20 63 75 72 76 65 |coordina|te curve|
|00000880| 73 27 27 2c 20 73 6f 20 | 62 6f 74 68 20 6c 69 65 |s'', so |both lie|
|00000890| 20 69 6e 20 74 68 65 20 | 74 61 6e 67 65 6e 74 0d | in the |tangent.|
|000008a0| 0a 70 6c 61 6e 65 20 74 | 6f 20 74 68 65 20 73 75 |.plane t|o the su|
|000008b0| 72 66 61 63 65 2e 20 5c | 20 49 66 20 79 6f 75 20 |rface. \| If you |
|000008c0| 65 76 61 6c 75 61 74 65 | 20 24 5c 6d 61 74 68 62 |evaluate| $\mathb|
|000008d0| 66 7b 72 7d 5f 7b 75 7d | 5c 6d 61 74 68 62 66 7b |f{r}_{u}|\mathbf{|
|000008e0| 5c 20 7d 24 61 6e 64 20 | 24 25 0d 0a 5c 6d 61 74 |\ }$and |$%..\mat|
|000008f0| 68 62 66 7b 72 7d 5f 7b | 76 7d 24 20 61 74 20 73 |hbf{r}_{|v}$ at s|
|00000900| 6f 6d 65 20 70 6f 69 6e | 74 20 6f 6e 20 74 68 65 |ome poin|t on the|
|00000910| 20 73 75 72 66 61 63 65 | 20 61 6e 64 20 63 61 6c | surface| and cal|
|00000920| 63 75 6c 61 74 65 20 74 | 68 65 20 63 72 6f 73 73 |culate t|he cross|
|00000930| 20 70 72 6f 64 75 63 74 | 20 0d 0a 24 5c 6d 61 74 | product| ..$\mat|
|00000940| 68 62 66 7b 72 7d 5f 7b | 75 7d 5c 6d 61 74 68 62 |hbf{r}_{|u}\mathb|
|00000950| 66 7b 5c 74 69 6d 65 73 | 20 72 7d 5f 7b 76 7d 24 |f{\times| r}_{v}$|
|00000960| 20 79 6f 75 20 77 69 6c | 6c 20 67 65 74 20 61 20 | you wil|l get a |
|00000970| 76 65 63 74 6f 72 20 5c | 74 65 78 74 62 66 7b 6e |vector \|textbf{n|
|00000980| 6f 72 6d 61 6c 7d 0d 0a | 28 69 2e 65 2e 20 70 65 |ormal}..|(i.e. pe|
|00000990| 72 70 65 6e 64 69 63 75 | 6c 61 72 29 20 74 6f 20 |rpendicu|lar) to |
|000009a0| 74 68 65 20 73 75 72 66 | 61 63 65 20 61 74 20 74 |the surf|ace at t|
|000009b0| 68 61 74 20 70 6f 69 6e | 74 2e 0d 0a 0d 0a 5c 69 |hat poin|t.....\i|
|000009c0| 74 65 6d 20 20 49 66 20 | 79 6f 75 20 61 73 73 75 |tem If |you assu|
|000009d0| 6d 65 20 74 68 61 74 20 | 65 61 63 68 20 70 6f 69 |me that |each poi|
|000009e0| 6e 74 20 6f 66 20 74 68 | 65 20 73 75 72 66 61 63 |nt of th|e surfac|
|000009f0| 65 20 63 6f 72 72 65 73 | 70 6f 6e 64 73 20 74 6f |e corres|ponds to|
|00000a00| 20 61 0d 0a 64 69 73 74 | 69 6e 63 74 20 70 6f 69 | a..dist|inct poi|
|00000a10| 6e 74 20 6f 66 20 24 44 | 24 2c 20 74 68 65 20 66 |nt of $D|$, the f|
|00000a20| 6f 72 6d 75 6c 61 20 66 | 6f 72 20 74 68 65 20 5c |ormula f|or the \|
|00000a30| 74 65 78 74 62 66 7b 61 | 72 65 61 20 6f 66 20 74 |textbf{a|rea of t|
|00000a40| 68 65 7d 20 5c 74 65 78 | 74 62 66 7b 25 0d 0a 73 |he} \tex|tbf{%..s|
|00000a50| 75 72 66 61 63 65 7d 20 | 69 73 20 0d 0a 5c 5b 0d |urface} |is ..\[.|
|00000a60| 0a 41 5c 6c 65 66 74 28 | 20 53 5c 72 69 67 68 74 |.A\left(| S\right|
|00000a70| 29 20 3d 5c 69 69 6e 74 | 5f 7b 44 7d 5c 6c 65 66 |) =\iint|_{D}\lef|
|00000a80| 74 7c 20 5c 6d 61 74 68 | 62 66 7b 72 7d 5f 7b 75 |t| \math|bf{r}_{u|
|00000a90| 7d 5c 6d 61 74 68 62 66 | 7b 5c 74 69 6d 65 73 20 |}\mathbf|{\times |
|00000aa0| 72 7d 5f 7b 76 7d 5c 72 | 69 67 68 74 7c 0d 0a 64 |r}_{v}\r|ight|..d|
|00000ab0| 41 0d 0a 5c 5d 0d 0a 49 | 6e 20 74 68 65 20 73 70 |A..\]..I|n the sp|
|00000ac0| 65 63 69 61 6c 20 63 61 | 73 65 20 69 6e 20 77 68 |ecial ca|se in wh|
|00000ad0| 69 63 68 20 24 44 24 20 | 69 73 20 61 20 64 6f 6d |ich $D$ |is a dom|
|00000ae0| 61 69 6e 20 69 6e 20 74 | 68 65 20 24 78 24 2d 24 |ain in t|he $x$-$|
|00000af0| 79 24 20 70 6c 61 6e 65 | 20 61 6e 64 20 74 68 65 |y$ plane| and the|
|00000b00| 0d 0a 73 75 72 66 61 63 | 65 20 69 73 20 67 69 76 |..surfac|e is giv|
|00000b10| 65 6e 20 65 78 70 6c 69 | 63 69 74 6c 79 20 62 79 |en expli|citly by|
|00000b20| 20 74 68 65 20 66 6f 72 | 6d 75 6c 61 20 24 7a 3d | the for|mula $z=|
|00000b30| 66 28 78 2c 79 29 24 2c | 20 74 68 65 20 70 61 72 |f(x,y)$,| the par|
|00000b40| 61 6d 65 74 72 69 7a 65 | 64 0d 0a 64 65 73 63 72 |ametrize|d..descr|
|00000b50| 69 70 74 69 6f 6e 20 6f | 66 20 74 68 65 20 73 75 |iption o|f the su|
|00000b60| 72 66 61 63 65 20 69 73 | 20 0d 0a 5c 5b 0d 0a 5c |rface is| ..\[..\|
|00000b70| 6d 61 74 68 62 66 7b 72 | 7d 5c 6c 65 66 74 28 20 |mathbf{r|}\left( |
|00000b80| 78 2c 79 5c 72 69 67 68 | 74 29 20 3d 78 5c 6d 61 |x,y\righ|t) =x\ma|
|00000b90| 74 68 62 66 7b 69 7d 2b | 79 5c 6d 61 74 68 62 66 |thbf{i}+|y\mathbf|
|00000ba0| 7b 6a 7d 2b 7a 5c 6c 65 | 66 74 28 20 78 2c 79 5c |{j}+z\le|ft( x,y\|
|00000bb0| 72 69 67 68 74 29 20 0d | 0a 5c 6d 61 74 68 62 66 |right) .|.\mathbf|
|00000bc0| 7b 6b 7d 5c 71 71 75 61 | 64 20 5c 6c 65 66 74 28 |{k}\qqua|d \left(|
|00000bd0| 20 78 2c 79 5c 72 69 67 | 68 74 29 20 5c 69 6e 20 | x,y\rig|ht) \in |
|00000be0| 44 5c 74 65 78 74 7b 2e | 7d 0d 0a 5c 5d 0d 0a 61 |D\text{.|}..\]..a|
|00000bf0| 6e 64 20 74 68 65 20 66 | 6f 72 6d 75 6c 61 20 66 |nd the f|ormula f|
|00000c00| 6f 72 20 73 75 72 66 61 | 63 65 20 61 72 65 61 20 |or surfa|ce area |
|00000c10| 69 6e 20 74 68 69 73 20 | 63 61 73 65 20 69 73 20 |in this |case is |
|00000c20| 0d 0a 5c 5b 0d 0a 41 5c | 6c 65 66 74 28 20 53 5c |..\[..A\|left( S\|
|00000c30| 72 69 67 68 74 29 20 3d | 5c 69 69 6e 74 5f 7b 44 |right) =|\iint_{D|
|00000c40| 7d 5c 73 71 72 74 7b 31 | 2b 5c 6c 65 66 74 28 20 |}\sqrt{1|+\left( |
|00000c50| 5c 66 72 61 63 7b 5c 70 | 61 72 74 69 61 6c 20 7a |\frac{\p|artial z|
|00000c60| 7d 7b 5c 70 61 72 74 69 | 61 6c 20 78 7d 25 0d 0a |}{\parti|al x}%..|
|00000c70| 5c 72 69 67 68 74 29 20 | 5e 7b 32 7d 2b 5c 6c 65 |\right) |^{2}+\le|
|00000c80| 66 74 28 20 5c 66 72 61 | 63 7b 5c 70 61 72 74 69 |ft( \fra|c{\parti|
|00000c90| 61 6c 20 7a 7d 7b 5c 70 | 61 72 74 69 61 6c 20 79 |al z}{\p|artial y|
|00000ca0| 7d 5c 72 69 67 68 74 29 | 20 5e 7b 32 7d 7d 64 78 |}\right)| ^{2}}dx|
|00000cb0| 64 79 0d 0a 5c 5d 0d 0a | 5c 65 6e 64 7b 69 74 65 |dy..\]..|\end{ite|
|00000cc0| 6d 69 7a 65 7d 0d 0a 0d | 0a 5c 73 75 62 73 65 63 |mize}...|.\subsec|
|00000cd0| 74 69 6f 6e 7b 5c 20 52 | 65 6c 61 74 65 64 20 53 |tion{\ R|elated S|
|00000ce0| 63 69 65 6e 74 69 66 69 | 63 20 4e 6f 74 65 62 6f |cientifi|c Notebo|
|00000cf0| 6f 6b 20 54 6f 70 69 63 | 73 7d 0d 0a 0d 0a 7b 5c |ok Topic|s}....{\|
|00000d00| 73 6d 61 6c 6c 20 5c 68 | 79 70 65 72 72 65 66 7b |small \h|yperref{|
|00000d10| 43 72 6f 73 73 20 70 72 | 6f 64 75 63 74 7d 7b 7d |Cross pr|oduct}{}|
|00000d20| 7b 7d 7b 2e 2e 2f 2e 2e | 2f 48 65 6c 70 2f 44 4d |{}{../..|/Help/DM|
|00000d30| 39 2d 31 2e 74 65 78 23 | 43 72 6f 73 73 20 70 72 |9-1.tex#|Cross pr|
|00000d40| 6f 64 75 63 74 7d 7d 0d | 0a 0d 0a 7b 5c 73 6d 61 |oduct}}.|...{\sma|
|00000d50| 6c 6c 20 5c 68 79 70 65 | 72 72 65 66 7b 49 74 65 |ll \hype|rref{Ite|
|00000d60| 72 61 74 65 64 20 69 6e | 74 65 67 72 61 6c 73 7d |rated in|tegrals}|
|00000d70| 7b 7d 7b 7d 7b 2e 2e 2f | 2e 2e 2f 48 65 6c 70 2f |{}{}{../|../Help/|
|00000d80| 44 4d 37 2d 38 2e 74 65 | 78 23 49 74 65 72 61 74 |DM7-8.te|x#Iterat|
|00000d90| 65 64 0d 0a 69 6e 74 65 | 67 72 61 6c 73 7d 7d 5c |ed..inte|grals}}\|
|00000da0| 68 66 69 6c 6c 20 0d 0a | 0d 0a 5c 6e 6f 69 6e 64 |hfill ..|..\noind|
|00000db0| 65 6e 74 20 5c 68 72 75 | 6c 65 66 69 6c 6c 0d 0a |ent \hru|lefill..|
|00000dc0| 0d 0a 5c 62 65 67 69 6e | 7b 63 65 6e 74 65 72 7d |..\begin|{center}|
|00000dd0| 0d 0a 5c 62 65 67 69 6e | 7b 74 61 62 75 6c 61 72 |..\begin|{tabular|
|00000de0| 7d 7b 63 63 63 7d 0d 0a | 7b 5c 73 6d 61 6c 6c 20 |}{ccc}..|{\small |
|00000df0| 5c 68 79 70 65 72 72 65 | 66 7b 5c 46 52 41 4d 45 |\hyperre|f{\FRAME|
|00000e00| 7b 69 74 62 70 46 7d 7b | 31 33 2e 39 33 37 35 70 |{itbpF}{|13.9375p|
|00000e10| 74 7d 7b 31 34 2e 34 33 | 37 35 70 74 7d 7b 33 70 |t}{14.43|75pt}{3p|
|00000e20| 74 7d 7b 7d 7b 7d 7b 6e | 62 6c 6f 67 6f 2e 77 6d |t}{}{}{n|blogo.wm|
|00000e30| 66 7d 7b 25 0d 0a 5c 73 | 70 65 63 69 61 6c 7b 6c |f}{%..\s|pecial{l|
|00000e40| 61 6e 67 75 61 67 65 20 | 22 53 63 69 65 6e 74 69 |anguage |"Scienti|
|00000e50| 66 69 63 20 57 6f 72 64 | 22 3b 74 79 70 65 20 22 |fic Word|";type "|
|00000e60| 47 52 41 50 48 49 43 22 | 3b 6d 61 69 6e 74 61 69 |GRAPHIC"|;maintai|
|00000e70| 6e 2d 61 73 70 65 63 74 | 2d 72 61 74 69 6f 0d 0a |n-aspect|-ratio..|
|00000e80| 54 52 55 45 3b 64 69 73 | 70 6c 61 79 20 22 50 49 |TRUE;dis|play "PI|
|00000e90| 43 54 22 3b 76 61 6c 69 | 64 5f 66 69 6c 65 20 22 |CT";vali|d_file "|
|00000ea0| 46 22 3b 77 69 64 74 68 | 20 31 33 2e 39 33 37 35 |F";width| 13.9375|
|00000eb0| 70 74 3b 68 65 69 67 68 | 74 20 31 34 2e 34 33 37 |pt;heigh|t 14.437|
|00000ec0| 35 70 74 3b 64 65 70 74 | 68 0d 0a 33 70 74 3b 6f |5pt;dept|h..3pt;o|
|00000ed0| 72 69 67 69 6e 61 6c 2d | 77 69 64 74 68 20 32 34 |riginal-|width 24|
|00000ee0| 2e 30 36 32 35 70 74 3b | 6f 72 69 67 69 6e 61 6c |.0625pt;|original|
|00000ef0| 2d 68 65 69 67 68 74 20 | 32 34 2e 38 31 32 35 70 |-height |24.8125p|
|00000f00| 74 3b 63 72 6f 70 6c 65 | 66 74 20 22 30 22 3b 63 |t;crople|ft "0";c|
|00000f10| 72 6f 70 74 6f 70 0d 0a | 22 30 2e 39 39 35 39 22 |roptop..|"0.9959"|
|00000f20| 3b 63 72 6f 70 72 69 67 | 68 74 20 22 30 2e 39 39 |;croprig|ht "0.99|
|00000f30| 33 37 22 3b 63 72 6f 70 | 62 6f 74 74 6f 6d 20 22 |37";crop|bottom "|
|00000f40| 30 22 3b 66 69 6c 65 6e | 61 6d 65 0d 0a 27 4e 62 |0";filen|ame..'Nb|
|00000f50| 6c 6f 67 6f 2e 77 6d 66 | 27 3b 66 69 6c 65 2d 70 |logo.wmf|';file-p|
|00000f60| 72 6f 70 65 72 74 69 65 | 73 20 22 58 4e 50 45 55 |ropertie|s "XNPEU|
|00000f70| 22 3b 7d 7d 43 6f 6d 70 | 75 74 69 6e 67 20 54 65 |";}}Comp|uting Te|
|00000f80| 63 68 6e 69 71 75 65 73 | 7d 7b 7d 7b 7d 7b 25 0d |chniques|}{}{}{%.|
|00000f90| 0a 2e 2e 2f 2e 2e 2f 48 | 65 6c 70 2f 44 4d 69 6e |.../../H|elp/DMin|
|00000fa0| 64 65 78 2e 74 65 78 7d | 7d 20 26 20 7b 5c 73 6d |dex.tex}|} & {\sm|
|00000fb0| 61 6c 6c 20 5c 68 79 70 | 65 72 72 65 66 7b 5c 46 |all \hyp|erref{\F|
|00000fc0| 52 41 4d 45 7b 69 74 62 | 70 46 7d 7b 31 33 2e 39 |RAME{itb|pF}{13.9|
|00000fd0| 33 37 35 70 74 7d 7b 25 | 0d 0a 31 34 2e 34 33 37 |375pt}{%|..14.437|
|00000fe0| 35 70 74 7d 7b 33 70 74 | 7d 7b 7d 7b 7d 7b 6e 62 |5pt}{3pt|}{}{}{nb|
|00000ff0| 6c 6f 67 6f 2e 77 6d 66 | 7d 7b 5c 73 70 65 63 69 |logo.wmf|}{\speci|
|00001000| 61 6c 7b 6c 61 6e 67 75 | 61 67 65 20 22 53 63 69 |al{langu|age "Sci|
|00001010| 65 6e 74 69 66 69 63 20 | 57 6f 72 64 22 3b 74 79 |entific |Word";ty|
|00001020| 70 65 0d 0a 22 47 52 41 | 50 48 49 43 22 3b 6d 61 |pe.."GRA|PHIC";ma|
|00001030| 69 6e 74 61 69 6e 2d 61 | 73 70 65 63 74 2d 72 61 |intain-a|spect-ra|
|00001040| 74 69 6f 20 54 52 55 45 | 3b 64 69 73 70 6c 61 79 |tio TRUE|;display|
|00001050| 20 22 50 49 43 54 22 3b | 76 61 6c 69 64 5f 66 69 | "PICT";|valid_fi|
|00001060| 6c 65 20 22 46 22 3b 77 | 69 64 74 68 0d 0a 31 33 |le "F";w|idth..13|
|00001070| 2e 39 33 37 35 70 74 3b | 68 65 69 67 68 74 20 31 |.9375pt;|height 1|
|00001080| 34 2e 34 33 37 35 70 74 | 3b 64 65 70 74 68 20 33 |4.4375pt|;depth 3|
|00001090| 70 74 3b 6f 72 69 67 69 | 6e 61 6c 2d 77 69 64 74 |pt;origi|nal-widt|
|000010a0| 68 0d 0a 32 34 2e 30 36 | 32 35 70 74 3b 6f 72 69 |h..24.06|25pt;ori|
|000010b0| 67 69 6e 61 6c 2d 68 65 | 69 67 68 74 20 32 34 2e |ginal-he|ight 24.|
|000010c0| 38 31 32 35 70 74 3b 63 | 72 6f 70 6c 65 66 74 20 |8125pt;c|ropleft |
|000010d0| 22 30 22 3b 63 72 6f 70 | 74 6f 70 20 22 30 2e 39 |"0";crop|top "0.9|
|000010e0| 39 35 39 22 3b 63 72 6f | 70 72 69 67 68 74 0d 0a |959";cro|pright..|
|000010f0| 22 30 2e 39 39 33 37 22 | 3b 63 72 6f 70 62 6f 74 |"0.9937"|;cropbot|
|00001100| 74 6f 6d 20 22 30 22 3b | 66 69 6c 65 6e 61 6d 65 |tom "0";|filename|
|00001110| 20 27 4e 62 6c 6f 67 6f | 2e 77 6d 66 27 3b 66 69 | 'Nblogo|.wmf';fi|
|00001120| 6c 65 2d 70 72 6f 70 65 | 72 74 69 65 73 20 22 58 |le-prope|rties "X|
|00001130| 4e 50 45 55 22 3b 7d 7d | 25 0d 0a 47 65 6e 65 72 |NPEU";}}|%..Gener|
|00001140| 61 6c 20 49 6e 66 6f 72 | 6d 61 74 69 6f 6e 7d 7b |al Infor|mation}{|
|00001150| 7d 7b 7d 7b 2e 2e 2f 2e | 2e 2f 48 65 6c 70 2f 49 |}{}{../.|./Help/I|
|00001160| 6e 64 65 78 2e 74 65 78 | 7d 7d 20 26 20 7b 5c 73 |ndex.tex|}} & {\s|
|00001170| 6d 61 6c 6c 20 5c 68 79 | 70 65 72 72 65 66 7b 5c |mall \hy|perref{\|
|00001180| 46 52 41 4d 45 7b 25 0d | 0a 69 74 62 70 46 7d 7b |FRAME{%.|.itbpF}{|
|00001190| 31 33 2e 39 33 37 35 70 | 74 7d 7b 31 34 2e 34 33 |13.9375p|t}{14.43|
|000011a0| 37 35 70 74 7d 7b 33 70 | 74 7d 7b 7d 7b 7d 7b 6e |75pt}{3p|t}{}{}{n|
|000011b0| 62 6c 6f 67 6f 2e 77 6d | 66 7d 7b 5c 73 70 65 63 |blogo.wm|f}{\spec|
|000011c0| 69 61 6c 7b 6c 61 6e 67 | 75 61 67 65 0d 0a 22 53 |ial{lang|uage.."S|
|000011d0| 63 69 65 6e 74 69 66 69 | 63 20 57 6f 72 64 22 3b |cientifi|c Word";|
|000011e0| 74 79 70 65 20 22 47 52 | 41 50 48 49 43 22 3b 6d |type "GR|APHIC";m|
|000011f0| 61 69 6e 74 61 69 6e 2d | 61 73 70 65 63 74 2d 72 |aintain-|aspect-r|
|00001200| 61 74 69 6f 20 54 52 55 | 45 3b 64 69 73 70 6c 61 |atio TRU|E;displa|
|00001210| 79 0d 0a 22 50 49 43 54 | 22 3b 76 61 6c 69 64 5f |y.."PICT|";valid_|
|00001220| 66 69 6c 65 20 22 46 22 | 3b 77 69 64 74 68 20 31 |file "F"|;width 1|
|00001230| 33 2e 39 33 37 35 70 74 | 3b 68 65 69 67 68 74 20 |3.9375pt|;height |
|00001240| 31 34 2e 34 33 37 35 70 | 74 3b 64 65 70 74 68 0d |14.4375p|t;depth.|
|00001250| 0a 33 70 74 3b 6f 72 69 | 67 69 6e 61 6c 2d 77 69 |.3pt;ori|ginal-wi|
|00001260| 64 74 68 20 32 34 2e 30 | 36 32 35 70 74 3b 6f 72 |dth 24.0|625pt;or|
|00001270| 69 67 69 6e 61 6c 2d 68 | 65 69 67 68 74 20 32 34 |iginal-h|eight 24|
|00001280| 2e 38 31 32 35 70 74 3b | 63 72 6f 70 6c 65 66 74 |.8125pt;|cropleft|
|00001290| 20 22 30 22 3b 63 72 6f | 70 74 6f 70 0d 0a 22 30 | "0";cro|ptop.."0|
|000012a0| 2e 39 39 35 39 22 3b 63 | 72 6f 70 72 69 67 68 74 |.9959";c|ropright|
|000012b0| 20 22 30 2e 39 39 33 37 | 22 3b 63 72 6f 70 62 6f | "0.9937|";cropbo|
|000012c0| 74 74 6f 6d 20 22 30 22 | 3b 66 69 6c 65 6e 61 6d |ttom "0"|;filenam|
|000012d0| 65 0d 0a 27 4e 62 6c 6f | 67 6f 2e 77 6d 66 27 3b |e..'Nblo|go.wmf';|
|000012e0| 66 69 6c 65 2d 70 72 6f | 70 65 72 74 69 65 73 20 |file-pro|perties |
|000012f0| 22 58 4e 50 45 55 22 3b | 7d 7d 52 65 66 65 72 65 |"XNPEU";|}}Refere|
|00001300| 6e 63 65 20 4c 69 62 72 | 61 72 79 7d 7b 7d 7b 7d |nce Libr|ary}{}{}|
|00001310| 7b 25 0d 0a 2e 2e 2f 52 | 65 66 65 72 65 6e 63 65 |{%..../R|eference|
|00001320| 49 6e 64 65 78 2e 74 65 | 78 7d 7d 0d 0a 5c 65 6e |Index.te|x}}..\en|
|00001330| 64 7b 74 61 62 75 6c 61 | 72 7d 0d 0a 5c 65 6e 64 |d{tabula|r}..\end|
|00001340| 7b 63 65 6e 74 65 72 7d | 0d 0a 0d 0a 5c 6e 6f 69 |{center}|....\noi|
|00001350| 6e 64 65 6e 74 20 5c 68 | 72 75 6c 65 66 69 6c 6c |ndent \h|rulefill|
|00001360| 0d 0a 0d 0a 5c 65 6e 64 | 7b 64 6f 63 75 6d 65 6e |....\end|{documen|
|00001370| 74 7d 0d 0a | |t}.. | |
+--------+-------------------------+-------------------------+--------+--------+