home *** CD-ROM | disk | FTP | other *** search
/ Class of 2001 / ClassOf2001.iso / Scinotebook / scinoteb / REFERENCE / MATHEMATICS / vec04_01.tex < prev    next >
LaTeX Document  |  1997-05-15  |  5.3 KB

open in: MacOS 8.1     |     Win98     |     DOS

browse contents    |     view JSON data     |     view as text


This file was processed as: LaTeX Document (document/latex).

ConfidenceProgramDetectionMatch TypeSupport
100% dexvert LaTeX Document (document/latex) magic Supported
100% dexvert Texinfo Document (document/texInfo) magic Supported
1% dexvert Corel 10 Texture (image/corel10Texture) ext Unsupported
1% dexvert Text File (text/txt) fallback Supported
100% file LaTeX 2e document text default
99% file LaTeX document text default
98% file TeX document text default
97% file LaTeX document, ASCII text, with CRLF line terminators default
100% TrID LaTeX 2e document (with rem) default
100% checkBytes Printable ASCII default
100% perlTextCheck Likely Text (Perl) default
100% siegfried fmt/280 LaTeX (Master document) default
100% detectItEasy Format: Plain text[CRLF] default
100% xdgMime text/x-matlab default (weak)



hex view
+--------+-------------------------+-------------------------+--------+--------+
|00000000| 25 25 20 54 68 69 73 20 | 64 6f 63 75 6d 65 6e 74 |%% This |document|
|00000010| 20 63 72 65 61 74 65 64 | 20 62 79 20 53 63 69 65 | created| by Scie|
|00000020| 6e 74 69 66 69 63 20 4e | 6f 74 65 62 6f 6f 6b 20 |ntific N|otebook |
|00000030| 28 52 29 20 56 65 72 73 | 69 6f 6e 20 33 2e 30 0d |(R) Vers|ion 3.0.|
|00000040| 0a 0d 0a 0d 0a 5c 64 6f | 63 75 6d 65 6e 74 63 6c |.....\do|cumentcl|
|00000050| 61 73 73 5b 31 32 70 74 | 2c 74 68 6d 73 61 5d 7b |ass[12pt|,thmsa]{|
|00000060| 61 72 74 69 63 6c 65 7d | 0d 0a 25 25 25 25 25 25 |article}|..%%%%%%|
|00000070| 25 25 25 25 25 25 25 25 | 25 25 25 25 25 25 25 25 |%%%%%%%%|%%%%%%%%|
|00000080| 25 25 25 25 25 25 25 25 | 25 25 25 25 25 25 25 25 |%%%%%%%%|%%%%%%%%|
|00000090| 25 25 25 25 25 25 25 25 | 25 25 25 25 25 25 25 25 |%%%%%%%%|%%%%%%%%|
|000000a0| 25 25 25 25 25 25 25 25 | 25 25 25 25 25 25 25 25 |%%%%%%%%|%%%%%%%%|
|000000b0| 25 25 25 25 25 25 25 25 | 25 25 25 25 25 25 25 25 |%%%%%%%%|%%%%%%%%|
|000000c0| 25 25 25 25 25 25 25 25 | 25 25 25 25 25 25 25 25 |%%%%%%%%|%%%%%%%%|
|000000d0| 25 25 25 25 25 25 25 25 | 25 25 25 25 25 25 25 25 |%%%%%%%%|%%%%%%%%|
|000000e0| 25 25 25 25 25 25 0d 0a | 5c 75 73 65 70 61 63 6b |%%%%%%..|\usepack|
|000000f0| 61 67 65 7b 73 77 32 30 | 6a 61 72 74 7d 0d 0a 0d |age{sw20|jart}...|
|00000100| 0a 25 54 43 49 44 41 54 | 41 7b 54 43 49 73 74 79 |.%TCIDAT|A{TCIsty|
|00000110| 6c 65 3d 61 72 74 69 63 | 6c 65 2f 61 72 74 34 2e |le=artic|le/art4.|
|00000120| 6c 61 74 2c 6a 61 72 74 | 2c 73 77 32 30 6a 61 72 |lat,jart|,sw20jar|
|00000130| 74 7d 0d 0a 0d 0a 25 54 | 43 49 44 41 54 41 7b 3c |t}....%T|CIDATA{<|
|00000140| 4d 45 54 41 20 4e 41 4d | 45 3d 22 56 69 65 77 53 |META NAM|E="ViewS|
|00000150| 65 74 74 69 6e 67 73 22 | 20 43 4f 4e 54 45 4e 54 |ettings"| CONTENT|
|00000160| 3d 22 32 33 22 3e 7d 0d | 0a 25 54 43 49 44 41 54 |="23">}.|.%TCIDAT|
|00000170| 41 7b 3c 4d 45 54 41 20 | 4e 41 4d 45 3d 22 47 72 |A{<META |NAME="Gr|
|00000180| 61 70 68 69 63 73 53 61 | 76 65 22 20 43 4f 4e 54 |aphicsSa|ve" CONT|
|00000190| 45 4e 54 3d 22 33 32 22 | 3e 7d 0d 0a 25 54 43 49 |ENT="32"|>}..%TCI|
|000001a0| 44 41 54 41 7b 3c 4d 45 | 54 41 20 4e 41 4d 45 3d |DATA{<ME|TA NAME=|
|000001b0| 22 54 69 74 6c 65 22 20 | 43 4f 4e 54 45 4e 54 3d |"Title" |CONTENT=|
|000001c0| 22 52 65 66 65 72 65 6e | 63 65 2f 4d 61 74 68 65 |"Referen|ce/Mathe|
|000001d0| 6d 61 74 69 63 73 2f 43 | 75 72 6c 20 61 6e 64 20 |matics/C|url and |
|000001e0| 44 69 76 65 72 67 65 6e | 63 65 22 3e 7d 0d 0a 25 |Divergen|ce">}..%|
|000001f0| 54 43 49 44 41 54 41 7b | 43 72 65 61 74 65 64 3d |TCIDATA{|Created=|
|00000200| 4d 6f 6e 20 41 75 67 20 | 31 39 20 31 34 3a 35 32 |Mon Aug |19 14:52|
|00000210| 3a 32 34 20 31 39 39 36 | 7d 0d 0a 25 54 43 49 44 |:24 1996|}..%TCID|
|00000220| 41 54 41 7b 4c 61 73 74 | 52 65 76 69 73 65 64 3d |ATA{Last|Revised=|
|00000230| 54 68 75 20 46 65 62 20 | 31 33 20 31 34 3a 32 38 |Thu Feb |13 14:28|
|00000240| 3a 30 33 20 31 39 39 37 | 7d 0d 0a 25 54 43 49 44 |:03 1997|}..%TCID|
|00000250| 41 54 41 7b 4c 61 6e 67 | 75 61 67 65 3d 41 6d 65 |ATA{Lang|uage=Ame|
|00000260| 72 69 63 61 6e 20 45 6e | 67 6c 69 73 68 7d 0d 0a |rican En|glish}..|
|00000270| 25 54 43 49 44 41 54 41 | 7b 43 53 54 46 69 6c 65 |%TCIDATA|{CSTFile|
|00000280| 3d 52 65 66 65 72 65 6e | 63 65 2e 63 73 74 7d 0d |=Referen|ce.cst}.|
|00000290| 0a 25 54 43 49 44 41 54 | 41 7b 50 61 67 65 53 65 |.%TCIDAT|A{PageSe|
|000002a0| 74 75 70 3d 37 32 2c 37 | 32 2c 37 32 2c 37 32 2c |tup=72,7|2,72,72,|
|000002b0| 30 7d 0d 0a 25 54 43 49 | 44 41 54 41 7b 3c 4c 49 |0}..%TCI|DATA{<LI|
|000002c0| 4e 4b 20 52 45 4c 3d 22 | 63 6f 6e 74 65 6e 74 73 |NK REL="|contents|
|000002d0| 22 20 48 52 45 46 3d 22 | 2e 2e 5c 2e 2e 5c 52 65 |" HREF="|..\..\Re|
|000002e0| 66 65 72 65 6e 63 65 5c | 52 65 66 65 72 65 6e 63 |ference\|Referenc|
|000002f0| 65 49 6e 64 65 78 2e 74 | 65 78 23 52 65 66 65 72 |eIndex.t|ex#Refer|
|00000300| 65 6e 63 65 20 49 6e 64 | 65 78 22 3e 7d 0d 0a 25 |ence Ind|ex">}..%|
|00000310| 54 43 49 44 41 54 41 7b | 3c 4c 49 4e 4b 20 52 45 |TCIDATA{|<LINK RE|
|00000320| 4c 3d 22 6e 65 78 74 22 | 20 48 52 45 46 3d 22 56 |L="next"| HREF="V|
|00000330| 45 43 30 35 5f 30 31 2e | 74 65 78 22 3e 7d 0d 0a |EC05_01.|tex">}..|
|00000340| 25 54 43 49 44 41 54 41 | 7b 3c 4c 49 4e 4b 20 52 |%TCIDATA|{<LINK R|
|00000350| 45 4c 3d 22 70 61 72 65 | 6e 74 22 20 48 52 45 46 |EL="pare|nt" HREF|
|00000360| 3d 22 56 45 43 5f 63 6f | 6e 74 65 6e 74 73 2e 74 |="VEC_co|ntents.t|
|00000370| 65 78 22 3e 7d 0d 0a 25 | 54 43 49 44 41 54 41 7b |ex">}..%|TCIDATA{|
|00000380| 3c 4c 49 4e 4b 20 52 45 | 4c 3d 22 70 72 65 76 69 |<LINK RE|L="previ|
|00000390| 6f 75 73 22 20 48 52 45 | 46 3d 22 56 45 43 30 33 |ous" HRE|F="VEC03|
|000003a0| 5f 30 31 2e 74 65 78 22 | 3e 7d 0d 0a 25 54 43 49 |_01.tex"|>}..%TCI|
|000003b0| 44 41 54 41 7b 41 6c 6c | 50 61 67 65 73 3d 0d 0a |DATA{All|Pages=..|
|000003c0| 25 46 3d 33 36 2c 5c 50 | 41 52 41 7b 30 33 38 3c |%F=36,\P|ARA{038<|
|000003d0| 70 20 74 79 70 65 3d 22 | 74 65 78 70 61 72 61 22 |p type="|texpara"|
|000003e0| 20 74 61 67 3d 22 42 6f | 64 79 20 54 65 78 74 22 | tag="Bo|dy Text"|
|000003f0| 20 3e 5c 68 66 69 6c 6c | 20 5c 74 68 65 70 61 67 | >\hfill| \thepag|
|00000400| 65 7d 0d 0a 25 7d 0d 0a | 0d 0a 0d 0a 5c 69 6e 70 |e}..%}..|....\inp|
|00000410| 75 74 7b 74 63 69 6c 61 | 74 65 78 7d 0d 0a 5c 62 |ut{tcila|tex}..\b|
|00000420| 65 67 69 6e 7b 64 6f 63 | 75 6d 65 6e 74 7d 0d 0a |egin{doc|ument}..|
|00000430| 0d 0a 0d 0a 5c 73 65 63 | 74 69 6f 6e 7b 43 75 72 |....\sec|tion{Cur|
|00000440| 6c 20 61 6e 64 20 44 69 | 76 65 72 67 65 6e 63 65 |l and Di|vergence|
|00000450| 5c 6c 61 62 65 6c 7b 43 | 75 72 6c 7d 7d 0d 0a 0d |\label{C|url}}...|
|00000460| 0a 54 77 6f 20 6f 70 65 | 72 61 74 69 6f 6e 73 20 |.Two ope|rations |
|00000470| 6f 6e 20 76 65 63 74 6f | 72 20 66 69 65 6c 64 73 |on vecto|r fields|
|00000480| 2d 2d 2d 63 75 72 6c 20 | 61 6e 64 20 64 69 76 65 |---curl |and dive|
|00000490| 72 67 65 6e 63 65 2d 2d | 2d 70 6c 61 79 20 61 20 |rgence--|-play a |
|000004a0| 62 61 73 69 63 20 72 6f | 6c 65 20 69 6e 0d 0a 74 |basic ro|le in..t|
|000004b0| 68 65 20 61 70 70 6c 69 | 63 61 74 69 6f 6e 73 20 |he appli|cations |
|000004c0| 6f 66 20 76 65 63 74 6f | 72 20 63 61 6c 63 75 6c |of vecto|r calcul|
|000004d0| 75 73 2e 20 42 6f 74 68 | 20 6f 70 65 72 61 74 69 |us. Both| operati|
|000004e0| 6f 6e 73 20 72 65 73 65 | 6d 62 6c 65 0d 0a 64 69 |ons rese|mble..di|
|000004f0| 66 66 65 72 65 6e 74 69 | 61 74 69 6f 6e 2c 20 62 |fferenti|ation, b|
|00000500| 75 74 20 69 6e 20 6f 6e | 65 20 63 61 73 65 20 74 |ut in on|e case t|
|00000510| 68 65 20 72 65 73 75 6c | 74 20 69 73 20 61 6e 6f |he resul|t is ano|
|00000520| 74 68 65 72 20 76 65 63 | 74 6f 72 20 66 69 65 6c |ther vec|tor fiel|
|00000530| 64 2c 20 61 6e 64 20 69 | 6e 0d 0a 74 68 65 20 6f |d, and i|n..the o|
|00000540| 74 68 65 72 20 63 61 73 | 65 20 74 68 65 20 72 65 |ther cas|e the re|
|00000550| 73 75 6c 74 20 69 73 20 | 61 20 73 63 61 6c 61 72 |sult is |a scalar|
|00000560| 20 66 75 6e 63 74 69 6f | 6e 2e 0d 0a 0d 0a 5c 73 | functio|n.....\s|
|00000570| 75 62 73 75 62 73 65 63 | 74 69 6f 6e 7b 43 75 72 |ubsubsec|tion{Cur|
|00000580| 6c 7d 0d 0a 0d 0a 5c 62 | 65 67 69 6e 7b 69 74 65 |l}....\b|egin{ite|
|00000590| 6d 69 7a 65 7d 0d 0a 5c | 69 74 65 6d 20 20 4c 65 |mize}..\|item Le|
|000005a0| 74 20 24 5c 6d 61 74 68 | 62 66 7b 46 7d 3d 50 5c |t $\math|bf{F}=P\|
|000005b0| 6d 61 74 68 62 66 7b 69 | 7d 2b 51 5c 6d 61 74 68 |mathbf{i|}+Q\math|
|000005c0| 62 66 7b 6a 7d 2b 52 5c | 6d 61 74 68 62 66 7b 6b |bf{j}+R\|mathbf{k|
|000005d0| 7d 24 20 64 65 6e 6f 74 | 65 20 61 20 76 65 63 74 |}$ denot|e a vect|
|000005e0| 6f 72 0d 0a 66 69 65 6c | 64 20 66 6f 72 20 77 68 |or..fiel|d for wh|
|000005f0| 69 63 68 20 74 68 65 20 | 70 61 72 74 69 61 6c 20 |ich the |partial |
|00000600| 64 65 72 69 76 61 74 69 | 76 65 73 20 6f 66 20 5c |derivati|ves of \|
|00000610| 20 24 50 24 2c 20 24 51 | 24 2c 20 61 6e 64 20 24 | $P$, $Q|$, and $|
|00000620| 52 24 20 61 6c 6c 20 65 | 78 69 73 74 2e 20 5c 0d |R$ all e|xist. \.|
|00000630| 0a 54 68 65 20 5c 74 65 | 78 74 62 66 7b 63 75 72 |.The \te|xtbf{cur|
|00000640| 6c 7d 20 6f 66 20 24 5c | 6d 61 74 68 62 66 7b 46 |l} of $\|mathbf{F|
|00000650| 7d 24 20 69 73 20 74 68 | 65 20 76 65 63 74 6f 72 |}$ is th|e vector|
|00000660| 20 66 69 65 6c 64 20 64 | 65 66 69 6e 65 64 20 62 | field d|efined b|
|00000670| 79 20 0d 0a 5c 5b 0d 0a | 5c 6c 69 6d 66 75 6e 63 |y ..\[..|\limfunc|
|00000680| 7b 63 75 72 6c 7d 5c 6d | 61 74 68 62 66 7b 46 7d |{curl}\m|athbf{F}|
|00000690| 3d 5c 6c 65 66 74 28 20 | 5c 66 72 61 63 7b 5c 70 |=\left( |\frac{\p|
|000006a0| 61 72 74 69 61 6c 20 52 | 7d 7b 5c 70 61 72 74 69 |artial R|}{\parti|
|000006b0| 61 6c 20 79 7d 2d 5c 66 | 72 61 63 7b 5c 70 61 72 |al y}-\f|rac{\par|
|000006c0| 74 69 61 6c 0d 0a 51 7d | 7b 5c 70 61 72 74 69 61 |tial..Q}|{\partia|
|000006d0| 6c 20 7a 7d 5c 72 69 67 | 68 74 29 20 5c 6d 61 74 |l z}\rig|ht) \mat|
|000006e0| 68 62 66 7b 69 7d 2b 5c | 6c 65 66 74 28 20 5c 66 |hbf{i}+\|left( \f|
|000006f0| 72 61 63 7b 5c 70 61 72 | 74 69 61 6c 20 50 7d 7b |rac{\par|tial P}{|
|00000700| 5c 70 61 72 74 69 61 6c | 20 7a 7d 2d 5c 66 72 61 |\partial| z}-\fra|
|00000710| 63 7b 25 0d 0a 5c 70 61 | 72 74 69 61 6c 20 52 7d |c{%..\pa|rtial R}|
|00000720| 7b 5c 70 61 72 74 69 61 | 6c 20 78 7d 5c 72 69 67 |{\partia|l x}\rig|
|00000730| 68 74 29 20 5c 6d 61 74 | 68 62 66 7b 6a 7d 2b 5c |ht) \mat|hbf{j}+\|
|00000740| 6c 65 66 74 28 20 5c 66 | 72 61 63 7b 5c 70 61 72 |left( \f|rac{\par|
|00000750| 74 69 61 6c 20 51 7d 7b | 5c 70 61 72 74 69 61 6c |tial Q}{|\partial|
|00000760| 20 78 25 0d 0a 7d 2d 5c | 66 72 61 63 7b 5c 70 61 | x%..}-\|frac{\pa|
|00000770| 72 74 69 61 6c 20 50 7d | 7b 5c 70 61 72 74 69 61 |rtial P}|{\partia|
|00000780| 6c 20 79 7d 5c 72 69 67 | 68 74 29 20 5c 6d 61 74 |l y}\rig|ht) \mat|
|00000790| 68 62 66 7b 6b 7d 0d 0a | 5c 5d 0d 0a 54 68 65 20 |hbf{k}..|\]..The |
|000007a0| 65 61 73 69 65 73 74 20 | 77 61 79 20 74 6f 20 72 |easiest |way to r|
|000007b0| 65 6d 65 6d 62 65 72 20 | 74 68 69 73 20 66 6f 72 |emember |this for|
|000007c0| 6d 75 6c 61 20 69 73 20 | 62 79 20 6d 65 61 6e 73 |mula is |by means|
|000007d0| 20 6f 66 20 74 68 65 20 | 73 79 6d 62 6f 6c 69 63 | of the |symbolic|
|000007e0| 0d 0a 65 78 70 72 65 73 | 73 69 6f 6e 20 0d 0a 5c |..expres|sion ..\|
|000007f0| 5b 0d 0a 5c 6c 69 6d 66 | 75 6e 63 7b 63 75 72 6c |[..\limf|unc{curl|
|00000800| 7d 5c 6d 61 74 68 62 66 | 7b 46 7d 3d 5c 6e 61 62 |}\mathbf|{F}=\nab|
|00000810| 6c 61 20 5c 74 69 6d 65 | 73 20 5c 6d 61 74 68 62 |la \time|s \mathb|
|00000820| 66 7b 46 7d 3d 5c 6c 65 | 66 74 7c 20 0d 0a 5c 62 |f{F}=\le|ft| ..\b|
|00000830| 65 67 69 6e 7b 61 72 72 | 61 79 7d 7b 6c 6c 6c 7d |egin{arr|ay}{lll}|
|00000840| 0d 0a 5c 6d 61 74 68 62 | 66 7b 69 7d 20 26 20 5c |..\mathb|f{i} & \|
|00000850| 6d 61 74 68 62 66 7b 6a | 7d 20 26 20 5c 6d 61 74 |mathbf{j|} & \mat|
|00000860| 68 62 66 7b 6b 7d 20 5c | 5c 20 0d 0a 5c 66 72 61 |hbf{k} \|\ ..\fra|
|00000870| 63 7b 5c 70 61 72 74 69 | 61 6c 20 7d 7b 5c 70 61 |c{\parti|al }{\pa|
|00000880| 72 74 69 61 6c 20 78 7d | 20 26 20 5c 66 72 61 63 |rtial x}| & \frac|
|00000890| 7b 5c 70 61 72 74 69 61 | 6c 20 7d 7b 5c 70 61 72 |{\partia|l }{\par|
|000008a0| 74 69 61 6c 20 79 7d 20 | 26 20 5c 66 72 61 63 7b |tial y} |& \frac{|
|000008b0| 5c 70 61 72 74 69 61 6c | 20 0d 0a 7d 7b 5c 70 61 |\partial| ..}{\pa|
|000008c0| 72 74 69 61 6c 20 7a 7d | 20 5c 5c 20 0d 0a 50 20 |rtial z}| \\ ..P |
|000008d0| 26 20 51 20 26 20 52 0d | 0a 5c 65 6e 64 7b 61 72 |& Q & R.|.\end{ar|
|000008e0| 72 61 79 7d 0d 0a 5c 72 | 69 67 68 74 7c 20 0d 0a |ray}..\r|ight| ..|
|000008f0| 5c 5d 0d 0a 48 65 72 65 | 20 77 65 20 68 61 76 65 |\]..Here| we have|
|00000900| 20 6d 61 64 65 20 75 73 | 65 20 6f 66 20 74 68 65 | made us|e of the|
|00000910| 20 6f 70 65 72 61 74 6f | 72 20 6e 6f 74 61 74 69 | operato|r notati|
|00000920| 6f 6e 20 0d 0a 5c 5b 0d | 0a 5c 6e 61 62 6c 61 20 |on ..\[.|.\nabla |
|00000930| 3d 5c 66 72 61 63 7b 5c | 70 61 72 74 69 61 6c 20 |=\frac{\|partial |
|00000940| 7d 7b 5c 70 61 72 74 69 | 61 6c 20 78 7d 5c 6d 61 |}{\parti|al x}\ma|
|00000950| 74 68 62 66 7b 69 2b 7d | 5c 66 72 61 63 7b 5c 70 |thbf{i+}|\frac{\p|
|00000960| 61 72 74 69 61 6c 20 7d | 7b 5c 70 61 72 74 69 61 |artial }|{\partia|
|00000970| 6c 20 79 7d 25 0d 0a 5c | 6d 61 74 68 62 66 7b 6a |l y}%..\|mathbf{j|
|00000980| 2b 7d 5c 66 72 61 63 7b | 5c 70 61 72 74 69 61 6c |+}\frac{|\partial|
|00000990| 20 7d 7b 5c 70 61 72 74 | 69 61 6c 20 7a 7d 5c 6d | }{\part|ial z}\m|
|000009a0| 61 74 68 62 66 7b 6b 7d | 5c 74 65 78 74 7b 2e 7d |athbf{k}|\text{.}|
|000009b0| 0d 0a 5c 5d 0d 0a 54 68 | 65 20 6d 61 69 6e 20 74 |..\]..Th|e main t|
|000009c0| 68 65 6f 72 65 6d 20 61 | 62 6f 75 74 20 63 75 72 |heorem a|bout cur|
|000009d0| 6c 20 69 73 20 74 68 65 | 20 66 6f 6c 6c 6f 77 69 |l is the| followi|
|000009e0| 6e 67 3a 0d 0a 5c 65 6e | 64 7b 69 74 65 6d 69 7a |ng:..\en|d{itemiz|
|000009f0| 65 7d 0d 0a 0d 0a 5c 62 | 65 67 69 6e 7b 74 68 65 |e}....\b|egin{the|
|00000a00| 6f 72 65 6d 7d 0d 0a 4c | 65 74 20 24 5c 6d 61 74 |orem}..L|et $\mat|
|00000a10| 68 62 66 7b 46 7d 24 20 | 62 65 20 61 20 76 65 63 |hbf{F}$ |be a vec|
|00000a20| 74 6f 72 20 66 69 65 6c | 64 20 64 65 66 69 6e 65 |tor fiel|d define|
|00000a30| 64 20 6f 6e 20 61 6c 6c | 20 6f 66 20 74 68 72 65 |d on all| of thre|
|00000a40| 65 20 64 69 6d 65 6e 73 | 69 6f 6e 61 6c 0d 0a 73 |e dimens|ional..s|
|00000a50| 70 61 63 65 2c 20 77 68 | 69 63 68 20 68 61 73 20 |pace, wh|ich has |
|00000a60| 63 6f 6e 74 69 6e 75 6f | 75 73 20 70 61 72 74 69 |continuo|us parti|
|00000a70| 61 6c 20 64 65 72 69 76 | 61 74 69 76 65 73 2e 20 |al deriv|atives. |
|00000a80| 54 68 65 6e 20 24 5c 6c | 69 6d 66 75 6e 63 7b 63 |Then $\l|imfunc{c|
|00000a90| 75 72 6c 7d 5c 6d 61 74 | 68 62 66 7b 25 0d 0a 46 |url}\mat|hbf{%..F|
|00000aa0| 7d 3d 30 24 20 69 66 20 | 61 6e 64 20 6f 6e 6c 79 |}=0$ if |and only|
|00000ab0| 20 69 66 20 24 5c 6d 61 | 74 68 62 66 7b 46 7d 24 | if $\ma|thbf{F}$|
|00000ac0| 20 69 73 20 61 20 63 6f | 6e 73 65 72 76 61 74 69 | is a co|nservati|
|00000ad0| 76 65 20 76 65 63 74 6f | 72 20 66 69 65 6c 64 2e |ve vecto|r field.|
|00000ae0| 20 5c 20 49 6e 0d 0a 70 | 61 72 74 69 63 75 6c 61 | \ In..p|articula|
|00000af0| 72 20 24 5c 6c 69 6d 66 | 75 6e 63 7b 63 75 72 6c |r $\limf|unc{curl|
|00000b00| 7d 5c 6c 65 66 74 28 20 | 5c 6e 61 62 6c 61 20 66 |}\left( |\nabla f|
|00000b10| 5c 72 69 67 68 74 29 20 | 3d 30 2e 24 0d 0a 5c 65 |\right) |=0.$..\e|
|00000b20| 6e 64 7b 74 68 65 6f 72 | 65 6d 7d 0d 0a 0d 0a 5c |nd{theor|em}....\|
|00000b30| 73 75 62 73 75 62 73 65 | 63 74 69 6f 6e 7b 44 69 |subsubse|ction{Di|
|00000b40| 76 65 72 67 65 6e 63 65 | 7d 0d 0a 0d 0a 5c 62 65 |vergence|}....\be|
|00000b50| 67 69 6e 7b 69 74 65 6d | 69 7a 65 7d 0d 0a 5c 69 |gin{item|ize}..\i|
|00000b60| 74 65 6d 20 20 4c 65 74 | 20 24 5c 6d 61 74 68 62 |tem Let| $\mathb|
|00000b70| 66 7b 46 7d 3d 50 5c 6d | 61 74 68 62 66 7b 69 7d |f{F}=P\m|athbf{i}|
|00000b80| 2b 51 5c 6d 61 74 68 62 | 66 7b 6a 7d 2b 52 5c 6d |+Q\mathb|f{j}+R\m|
|00000b90| 61 74 68 62 66 7b 6b 7d | 24 20 64 65 6e 6f 74 65 |athbf{k}|$ denote|
|00000ba0| 20 61 20 76 65 63 74 6f | 72 0d 0a 66 69 65 6c 64 | a vecto|r..field|
|00000bb0| 20 66 6f 72 20 77 68 69 | 63 68 20 74 68 65 20 70 | for whi|ch the p|
|00000bc0| 61 72 74 69 61 6c 20 64 | 65 72 69 76 61 74 69 76 |artial d|erivativ|
|00000bd0| 65 73 20 6f 66 20 5c 20 | 24 50 24 2c 20 24 51 24 |es of \ |$P$, $Q$|
|00000be0| 2c 20 61 6e 64 20 24 52 | 24 20 61 6c 6c 20 65 78 |, and $R|$ all ex|
|00000bf0| 69 73 74 2e 20 5c 0d 0a | 54 68 65 20 5c 74 65 78 |ist. \..|The \tex|
|00000c00| 74 62 66 7b 64 69 76 65 | 72 67 65 6e 63 65 7d 20 |tbf{dive|rgence} |
|00000c10| 6f 66 20 24 5c 6d 61 74 | 68 62 66 7b 46 7d 24 20 |of $\mat|hbf{F}$ |
|00000c20| 69 73 20 74 68 65 20 76 | 65 63 74 6f 72 20 66 69 |is the v|ector fi|
|00000c30| 65 6c 64 20 64 65 66 69 | 6e 65 64 20 62 79 20 0d |eld defi|ned by .|
|00000c40| 0a 5c 5b 0d 0a 5c 6c 69 | 6d 66 75 6e 63 7b 64 69 |.\[..\li|mfunc{di|
|00000c50| 76 7d 5c 6d 61 74 68 62 | 66 7b 46 7d 3d 5c 6e 61 |v}\mathb|f{F}=\na|
|00000c60| 62 6c 61 20 5c 63 64 6f | 74 20 5c 6d 61 74 68 62 |bla \cdo|t \mathb|
|00000c70| 66 7b 46 3d 7d 5c 66 72 | 61 63 7b 5c 70 61 72 74 |f{F=}\fr|ac{\part|
|00000c80| 69 61 6c 20 50 7d 7b 5c | 70 61 72 74 69 61 6c 20 |ial P}{\|partial |
|00000c90| 78 7d 25 0d 0a 2b 5c 66 | 72 61 63 7b 5c 70 61 72 |x}%..+\f|rac{\par|
|00000ca0| 74 69 61 6c 20 51 7d 7b | 5c 70 61 72 74 69 61 6c |tial Q}{|\partial|
|00000cb0| 20 79 7d 2b 5c 66 72 61 | 63 7b 5c 70 61 72 74 69 | y}+\fra|c{\parti|
|00000cc0| 61 6c 20 52 7d 7b 5c 70 | 61 72 74 69 61 6c 20 7a |al R}{\p|artial z|
|00000cd0| 7d 20 0d 0a 5c 5d 0d 0a | 0d 0a 54 68 65 20 6d 61 |} ..\]..|..The ma|
|00000ce0| 69 6e 20 74 68 65 6f 72 | 65 6d 20 61 62 6f 75 74 |in theor|em about|
|00000cf0| 20 64 69 76 65 72 67 65 | 6e 63 65 20 69 73 20 74 | diverge|nce is t|
|00000d00| 68 65 20 66 6f 6c 6c 6f | 77 69 6e 67 3a 0d 0a 5c |he follo|wing:..\|
|00000d10| 65 6e 64 7b 69 74 65 6d | 69 7a 65 7d 0d 0a 0d 0a |end{item|ize}....|
|00000d20| 5c 62 65 67 69 6e 7b 74 | 68 65 6f 72 65 6d 7d 0d |\begin{t|heorem}.|
|00000d30| 0a 4c 65 74 20 24 5c 6d | 61 74 68 62 66 7b 46 7d |.Let $\m|athbf{F}|
|00000d40| 24 20 62 65 20 61 20 76 | 65 63 74 6f 72 20 66 69 |$ be a v|ector fi|
|00000d50| 65 6c 64 20 64 65 66 69 | 6e 65 64 20 6f 6e 20 61 |eld defi|ned on a|
|00000d60| 6c 6c 20 6f 66 20 74 68 | 72 65 65 20 64 69 6d 65 |ll of th|ree dime|
|00000d70| 6e 73 69 6f 6e 61 6c 0d | 0a 73 70 61 63 65 2c 20 |nsional.|.space, |
|00000d80| 77 68 69 63 68 20 68 61 | 73 20 63 6f 6e 74 69 6e |which ha|s contin|
|00000d90| 75 6f 75 73 20 70 61 72 | 74 69 61 6c 20 64 65 72 |uous par|tial der|
|00000da0| 69 76 61 74 69 76 65 73 | 2e 20 54 68 65 6e 20 24 |ivatives|. Then $|
|00000db0| 5c 6c 69 6d 66 75 6e 63 | 7b 64 69 76 7d 5c 6d 61 |\limfunc|{div}\ma|
|00000dc0| 74 68 62 66 7b 46 25 0d | 0a 7d 3d 30 24 20 69 66 |thbf{F%.|.}=0$ if|
|00000dd0| 20 61 6e 64 20 6f 6e 6c | 79 20 69 66 20 24 5c 6d | and onl|y if $\m|
|00000de0| 61 74 68 62 66 7b 46 7d | 24 20 69 73 20 61 20 63 |athbf{F}|$ is a c|
|00000df0| 75 72 6c 20 6f 66 20 61 | 6e 6f 74 68 65 72 20 76 |url of a|nother v|
|00000e00| 65 63 74 6f 72 20 66 69 | 65 6c 64 20 24 5c 6d 61 |ector fi|eld $\ma|
|00000e10| 74 68 62 66 7b 47 25 0d | 0a 7d 24 20 28 63 61 6c |thbf{G%.|.}$ (cal|
|00000e20| 6c 65 64 20 74 68 65 20 | 76 65 63 74 6f 72 20 70 |led the |vector p|
|00000e30| 6f 74 65 6e 74 69 61 6c | 20 6f 66 20 24 5c 6d 61 |otential| of $\ma|
|00000e40| 74 68 62 66 7b 46 7d 24 | 5c 74 65 78 74 62 66 7b |thbf{F}$|\textbf{|
|00000e50| 29 7d 2e 20 5c 20 49 6e | 20 70 61 72 74 69 63 75 |)}. \ In| particu|
|00000e60| 6c 61 72 20 24 25 0d 0a | 5c 6c 69 6d 66 75 6e 63 |lar $%..|\limfunc|
|00000e70| 7b 64 69 76 7d 5c 6c 69 | 6d 66 75 6e 63 7b 63 75 |{div}\li|mfunc{cu|
|00000e80| 72 6c 7d 5c 6d 61 74 68 | 62 66 7b 46 7d 3d 30 2e |rl}\math|bf{F}=0.|
|00000e90| 24 0d 0a 5c 65 6e 64 7b | 74 68 65 6f 72 65 6d 7d |$..\end{|theorem}|
|00000ea0| 0d 0a 0d 0a 5c 73 74 72 | 75 74 0d 0a 0d 0a 5c 73 |....\str|ut....\s|
|00000eb0| 75 62 73 65 63 74 69 6f | 6e 7b 52 65 6c 61 74 65 |ubsectio|n{Relate|
|00000ec0| 64 20 53 63 69 65 6e 74 | 69 66 69 63 20 4e 6f 74 |d Scient|ific Not|
|00000ed0| 65 62 6f 6f 6b 20 54 6f | 70 69 63 73 7d 0d 0a 0d |ebook To|pics}...|
|00000ee0| 0a 7b 5c 73 6d 61 6c 6c | 20 5c 68 79 70 65 72 72 |.{\small| \hyperr|
|00000ef0| 65 66 7b 47 72 61 64 69 | 65 6e 74 2c 20 44 69 76 |ef{Gradi|ent, Div|
|00000f00| 65 72 67 65 6e 63 65 2c | 20 61 6e 64 20 43 75 72 |ergence,| and Cur|
|00000f10| 6c 7d 7b 7d 7b 7d 7b 25 | 0d 0a 2e 2e 2f 2e 2e 2f |l}{}{}{%|..../../|
|00000f20| 48 65 6c 70 2f 44 4d 39 | 2d 32 2e 74 65 78 23 47 |Help/DM9|-2.tex#G|
|00000f30| 72 61 64 69 65 6e 74 7d | 7d 5c 68 66 69 6c 6c 0d |radient}|}\hfill.|
|00000f40| 0a 0d 0a 5c 6e 6f 69 6e | 64 65 6e 74 20 5c 68 72 |...\noin|dent \hr|
|00000f50| 75 6c 65 66 69 6c 6c 0d | 0a 0d 0a 5c 62 65 67 69 |ulefill.|...\begi|
|00000f60| 6e 7b 63 65 6e 74 65 72 | 7d 0d 0a 5c 62 65 67 69 |n{center|}..\begi|
|00000f70| 6e 7b 74 61 62 75 6c 61 | 72 7d 7b 63 63 63 7d 0d |n{tabula|r}{ccc}.|
|00000f80| 0a 7b 5c 73 6d 61 6c 6c | 20 5c 68 79 70 65 72 72 |.{\small| \hyperr|
|00000f90| 65 66 7b 5c 46 52 41 4d | 45 7b 69 74 62 70 46 7d |ef{\FRAM|E{itbpF}|
|00000fa0| 7b 31 33 2e 39 33 37 35 | 70 74 7d 7b 31 34 2e 34 |{13.9375|pt}{14.4|
|00000fb0| 33 37 35 70 74 7d 7b 33 | 70 74 7d 7b 7d 7b 7d 7b |375pt}{3|pt}{}{}{|
|00000fc0| 6e 62 6c 6f 67 6f 2e 77 | 6d 66 7d 7b 25 0d 0a 5c |nblogo.w|mf}{%..\|
|00000fd0| 73 70 65 63 69 61 6c 7b | 6c 61 6e 67 75 61 67 65 |special{|language|
|00000fe0| 20 22 53 63 69 65 6e 74 | 69 66 69 63 20 57 6f 72 | "Scient|ific Wor|
|00000ff0| 64 22 3b 74 79 70 65 20 | 22 47 52 41 50 48 49 43 |d";type |"GRAPHIC|
|00001000| 22 3b 6d 61 69 6e 74 61 | 69 6e 2d 61 73 70 65 63 |";mainta|in-aspec|
|00001010| 74 2d 72 61 74 69 6f 0d | 0a 54 52 55 45 3b 64 69 |t-ratio.|.TRUE;di|
|00001020| 73 70 6c 61 79 20 22 50 | 49 43 54 22 3b 76 61 6c |splay "P|ICT";val|
|00001030| 69 64 5f 66 69 6c 65 20 | 22 46 22 3b 77 69 64 74 |id_file |"F";widt|
|00001040| 68 20 31 33 2e 39 33 37 | 35 70 74 3b 68 65 69 67 |h 13.937|5pt;heig|
|00001050| 68 74 20 31 34 2e 34 33 | 37 35 70 74 3b 64 65 70 |ht 14.43|75pt;dep|
|00001060| 74 68 0d 0a 33 70 74 3b | 6f 72 69 67 69 6e 61 6c |th..3pt;|original|
|00001070| 2d 77 69 64 74 68 20 32 | 34 2e 30 36 32 35 70 74 |-width 2|4.0625pt|
|00001080| 3b 6f 72 69 67 69 6e 61 | 6c 2d 68 65 69 67 68 74 |;origina|l-height|
|00001090| 20 32 34 2e 38 31 32 35 | 70 74 3b 63 72 6f 70 6c | 24.8125|pt;cropl|
|000010a0| 65 66 74 20 22 30 22 3b | 63 72 6f 70 74 6f 70 0d |eft "0";|croptop.|
|000010b0| 0a 22 30 2e 39 39 35 39 | 22 3b 63 72 6f 70 72 69 |."0.9959|";cropri|
|000010c0| 67 68 74 20 22 30 2e 39 | 39 33 37 22 3b 63 72 6f |ght "0.9|937";cro|
|000010d0| 70 62 6f 74 74 6f 6d 20 | 22 30 22 3b 66 69 6c 65 |pbottom |"0";file|
|000010e0| 6e 61 6d 65 0d 0a 27 4e | 62 6c 6f 67 6f 2e 77 6d |name..'N|blogo.wm|
|000010f0| 66 27 3b 66 69 6c 65 2d | 70 72 6f 70 65 72 74 69 |f';file-|properti|
|00001100| 65 73 20 22 58 4e 50 45 | 55 22 3b 7d 7d 43 6f 6d |es "XNPE|U";}}Com|
|00001110| 70 75 74 69 6e 67 20 54 | 65 63 68 6e 69 71 75 65 |puting T|echnique|
|00001120| 73 7d 7b 7d 7b 7d 7b 25 | 0d 0a 2e 2e 2f 2e 2e 2f |s}{}{}{%|..../../|
|00001130| 48 65 6c 70 2f 44 4d 69 | 6e 64 65 78 2e 74 65 78 |Help/DMi|ndex.tex|
|00001140| 7d 7d 20 26 20 7b 5c 73 | 6d 61 6c 6c 20 5c 68 79 |}} & {\s|mall \hy|
|00001150| 70 65 72 72 65 66 7b 5c | 46 52 41 4d 45 7b 69 74 |perref{\|FRAME{it|
|00001160| 62 70 46 7d 7b 31 33 2e | 39 33 37 35 70 74 7d 7b |bpF}{13.|9375pt}{|
|00001170| 25 0d 0a 31 34 2e 34 33 | 37 35 70 74 7d 7b 33 70 |%..14.43|75pt}{3p|
|00001180| 74 7d 7b 7d 7b 7d 7b 6e | 62 6c 6f 67 6f 2e 77 6d |t}{}{}{n|blogo.wm|
|00001190| 66 7d 7b 5c 73 70 65 63 | 69 61 6c 7b 6c 61 6e 67 |f}{\spec|ial{lang|
|000011a0| 75 61 67 65 20 22 53 63 | 69 65 6e 74 69 66 69 63 |uage "Sc|ientific|
|000011b0| 20 57 6f 72 64 22 3b 74 | 79 70 65 0d 0a 22 47 52 | Word";t|ype.."GR|
|000011c0| 41 50 48 49 43 22 3b 6d | 61 69 6e 74 61 69 6e 2d |APHIC";m|aintain-|
|000011d0| 61 73 70 65 63 74 2d 72 | 61 74 69 6f 20 54 52 55 |aspect-r|atio TRU|
|000011e0| 45 3b 64 69 73 70 6c 61 | 79 20 22 50 49 43 54 22 |E;displa|y "PICT"|
|000011f0| 3b 76 61 6c 69 64 5f 66 | 69 6c 65 20 22 46 22 3b |;valid_f|ile "F";|
|00001200| 77 69 64 74 68 0d 0a 31 | 33 2e 39 33 37 35 70 74 |width..1|3.9375pt|
|00001210| 3b 68 65 69 67 68 74 20 | 31 34 2e 34 33 37 35 70 |;height |14.4375p|
|00001220| 74 3b 64 65 70 74 68 20 | 33 70 74 3b 6f 72 69 67 |t;depth |3pt;orig|
|00001230| 69 6e 61 6c 2d 77 69 64 | 74 68 0d 0a 32 34 2e 30 |inal-wid|th..24.0|
|00001240| 36 32 35 70 74 3b 6f 72 | 69 67 69 6e 61 6c 2d 68 |625pt;or|iginal-h|
|00001250| 65 69 67 68 74 20 32 34 | 2e 38 31 32 35 70 74 3b |eight 24|.8125pt;|
|00001260| 63 72 6f 70 6c 65 66 74 | 20 22 30 22 3b 63 72 6f |cropleft| "0";cro|
|00001270| 70 74 6f 70 20 22 30 2e | 39 39 35 39 22 3b 63 72 |ptop "0.|9959";cr|
|00001280| 6f 70 72 69 67 68 74 0d | 0a 22 30 2e 39 39 33 37 |opright.|."0.9937|
|00001290| 22 3b 63 72 6f 70 62 6f | 74 74 6f 6d 20 22 30 22 |";cropbo|ttom "0"|
|000012a0| 3b 66 69 6c 65 6e 61 6d | 65 20 27 4e 62 6c 6f 67 |;filenam|e 'Nblog|
|000012b0| 6f 2e 77 6d 66 27 3b 66 | 69 6c 65 2d 70 72 6f 70 |o.wmf';f|ile-prop|
|000012c0| 65 72 74 69 65 73 20 22 | 58 4e 50 45 55 22 3b 7d |erties "|XNPEU";}|
|000012d0| 7d 25 0d 0a 47 65 6e 65 | 72 61 6c 20 49 6e 66 6f |}%..Gene|ral Info|
|000012e0| 72 6d 61 74 69 6f 6e 7d | 7b 7d 7b 7d 7b 2e 2e 2f |rmation}|{}{}{../|
|000012f0| 2e 2e 2f 48 65 6c 70 2f | 49 6e 64 65 78 2e 74 65 |../Help/|Index.te|
|00001300| 78 7d 7d 20 26 20 7b 5c | 73 6d 61 6c 6c 20 5c 68 |x}} & {\|small \h|
|00001310| 79 70 65 72 72 65 66 7b | 5c 46 52 41 4d 45 7b 25 |yperref{|\FRAME{%|
|00001320| 0d 0a 69 74 62 70 46 7d | 7b 31 33 2e 39 33 37 35 |..itbpF}|{13.9375|
|00001330| 70 74 7d 7b 31 34 2e 34 | 33 37 35 70 74 7d 7b 33 |pt}{14.4|375pt}{3|
|00001340| 70 74 7d 7b 7d 7b 7d 7b | 6e 62 6c 6f 67 6f 2e 77 |pt}{}{}{|nblogo.w|
|00001350| 6d 66 7d 7b 5c 73 70 65 | 63 69 61 6c 7b 6c 61 6e |mf}{\spe|cial{lan|
|00001360| 67 75 61 67 65 0d 0a 22 | 53 63 69 65 6e 74 69 66 |guage.."|Scientif|
|00001370| 69 63 20 57 6f 72 64 22 | 3b 74 79 70 65 20 22 47 |ic Word"|;type "G|
|00001380| 52 41 50 48 49 43 22 3b | 6d 61 69 6e 74 61 69 6e |RAPHIC";|maintain|
|00001390| 2d 61 73 70 65 63 74 2d | 72 61 74 69 6f 20 54 52 |-aspect-|ratio TR|
|000013a0| 55 45 3b 64 69 73 70 6c | 61 79 0d 0a 22 50 49 43 |UE;displ|ay.."PIC|
|000013b0| 54 22 3b 76 61 6c 69 64 | 5f 66 69 6c 65 20 22 46 |T";valid|_file "F|
|000013c0| 22 3b 77 69 64 74 68 20 | 31 33 2e 39 33 37 35 70 |";width |13.9375p|
|000013d0| 74 3b 68 65 69 67 68 74 | 20 31 34 2e 34 33 37 35 |t;height| 14.4375|
|000013e0| 70 74 3b 64 65 70 74 68 | 0d 0a 33 70 74 3b 6f 72 |pt;depth|..3pt;or|
|000013f0| 69 67 69 6e 61 6c 2d 77 | 69 64 74 68 20 32 34 2e |iginal-w|idth 24.|
|00001400| 30 36 32 35 70 74 3b 6f | 72 69 67 69 6e 61 6c 2d |0625pt;o|riginal-|
|00001410| 68 65 69 67 68 74 20 32 | 34 2e 38 31 32 35 70 74 |height 2|4.8125pt|
|00001420| 3b 63 72 6f 70 6c 65 66 | 74 20 22 30 22 3b 63 72 |;croplef|t "0";cr|
|00001430| 6f 70 74 6f 70 0d 0a 22 | 30 2e 39 39 35 39 22 3b |optop.."|0.9959";|
|00001440| 63 72 6f 70 72 69 67 68 | 74 20 22 30 2e 39 39 33 |croprigh|t "0.993|
|00001450| 37 22 3b 63 72 6f 70 62 | 6f 74 74 6f 6d 20 22 30 |7";cropb|ottom "0|
|00001460| 22 3b 66 69 6c 65 6e 61 | 6d 65 0d 0a 27 4e 62 6c |";filena|me..'Nbl|
|00001470| 6f 67 6f 2e 77 6d 66 27 | 3b 66 69 6c 65 2d 70 72 |ogo.wmf'|;file-pr|
|00001480| 6f 70 65 72 74 69 65 73 | 20 22 58 4e 50 45 55 22 |operties| "XNPEU"|
|00001490| 3b 7d 7d 52 65 66 65 72 | 65 6e 63 65 20 4c 69 62 |;}}Refer|ence Lib|
|000014a0| 72 61 72 79 7d 7b 7d 7b | 7d 7b 25 0d 0a 2e 2e 2f |rary}{}{|}{%..../|
|000014b0| 52 65 66 65 72 65 6e 63 | 65 49 6e 64 65 78 2e 74 |Referenc|eIndex.t|
|000014c0| 65 78 7d 7d 0d 0a 5c 65 | 6e 64 7b 74 61 62 75 6c |ex}}..\e|nd{tabul|
|000014d0| 61 72 7d 0d 0a 5c 65 6e | 64 7b 63 65 6e 74 65 72 |ar}..\en|d{center|
|000014e0| 7d 0d 0a 0d 0a 5c 6e 6f | 69 6e 64 65 6e 74 20 5c |}....\no|indent \|
|000014f0| 68 72 75 6c 65 66 69 6c | 6c 0d 0a 0d 0a 5c 65 6e |hrulefil|l....\en|
|00001500| 64 7b 64 6f 63 75 6d 65 | 6e 74 7d 0d 0a |d{docume|nt}.. |
+--------+-------------------------+-------------------------+--------+--------+