home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Fresh Fish 7
/
FreshFishVol7.bin
/
bbs
/
gnu
/
gcc-2.3.3-src.lha
/
GNU
/
src
/
amiga
/
gcc-2.3.3
/
config
/
elxsi.h
< prev
next >
Wrap
C/C++ Source or Header
|
1994-02-06
|
35KB
|
981 lines
/* Definitions of target machine for GNU compiler. Elxsi version.
Copyright (C) 1987, 1988, 1992 Free Software Foundation, Inc.
This port, done by Mike Stump <mrs@cygnus.com> in 1988, and is the first
64 bit port of GNU CC.
Based upon the VAX port.
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 1, or (at your option)
any later version.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
/* Names to predefine in the preprocessor for this target machine. */
#define CPP_PREDEFINES "-Delxsi -Dunix"
/* Print subsidiary information on the compiler version in use. */
#define TARGET_VERSION fprintf (stderr, " (elxsi)");
/* Run-time compilation parameters selecting different hardware subsets. */
extern int target_flags;
/* Macros used in the machine description to test the flags. */
/* Nonzero if compiling code that Unix assembler can assemble. */
#define TARGET_UNIX_ASM (target_flags & 1)
/* Macro to define tables used to set the flags.
This is a list in braces of pairs in braces,
each pair being { "NAME", VALUE }
where VALUE is the bits to set or minus the bits to clear.
An empty string NAME is used to identify the default VALUE. */
#define TARGET_SWITCHES \
{ {"unix", 1}, \
{"embos", -1}, \
{ "", TARGET_DEFAULT}}
/* Default target_flags if no switches specified. */
#ifndef TARGET_DEFAULT
#define TARGET_DEFAULT 1
#endif
/* Target machine storage layout */
/* Define this if most significant bit is lowest numbered
in instructions that operate on numbered bit-fields.
This is not true on the vax. */
/* #define BITS_BIG_ENDIAN */
/* Define this if most significant byte of a word is the lowest numbered. */
#define BYTES_BIG_ENDIAN 1
/* Define this if most significant word of a multiword number is numbered. */
#define WORDS_BIG_ENDIAN 1
/* Number of bits in an addressible storage unit */
#define BITS_PER_UNIT 8
/* Width in bits of a "word", which is the contents of a machine register.
Note that this is not necessarily the width of data type `int';
if using 16-bit ints on a 68000, this would still be 32.
But on a machine with 16-bit registers, this would be 16. */
#define BITS_PER_WORD 64
#define Rmode DImode
#define INT_TYPE_SIZE 32
#define LONG_TYPE_SIZE 32
#define LONG_LONG_TYPE_SIZE 64
#define FLOAT_TYPE_SIZE 32
#define DOUBLE_TYPE_SIZE 64
#define LONG_DOUBLE_TYPE_SIZE 64
/* Width of a word, in units (bytes). */
#define UNITS_PER_WORD 8
/* Width in bits of a pointer.
See also the macro `Pmode' defined below. */
#define POINTER_SIZE 32
/* Allocation boundary (in *bits*) for storing pointers in memory. */
#define POINTER_BOUNDARY 32
/* Allocation boundary (in *bits*) for storing arguments in argument list. */
#define PARM_BOUNDARY 32
/* Allocation boundary (in *bits*) for the code of a function. */
#define FUNCTION_BOUNDARY 8
/* Alignment of field after `int : 0' in a structure. */
#define EMPTY_FIELD_BOUNDARY 8
/* Every structure's size must be a multiple of this. */
#define STRUCTURE_SIZE_BOUNDARY 32
/* A bitfield declared as `int' forces `int' alignment for the struct. */
#define PCC_BITFIELD_TYPE_MATTERS 1
/* No data type wants to be aligned rounder than this. */
#define BIGGEST_ALIGNMENT 32
/* Define this if move instructions will actually fail to work
when given unaligned data. */
#define STRICT_ALIGNMENT 0
/* Standard register usage. */
/* Number of actual hardware registers.
The hardware registers are assigned numbers for the compiler
from 0 to just below FIRST_PSEUDO_REGISTER.
All registers that the compiler knows about must be given numbers,
even those that are not normally considered general registers. */
#define FIRST_PSEUDO_REGISTER 16
/* 1 for registers that have pervasive standard uses
and are not available for the register allocator.
On the elxsi, these is the .r15 (aka .sp). */
#define FIXED_REGISTERS {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}
/* 1 for registers not available across function calls.
These must include the FIXED_REGISTERS and also any
registers that can be used without being saved.
The latter must include the registers where values are returned
and the register where structure-value addresses are passed.
Aside from that, you can include as many other registers as you like. */
#define CALL_USED_REGISTERS {1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}
/* Return number of consecutive hard regs needed starting at reg REGNO
to hold something of mode MODE.
This is ordinarily the length in words of a value of mode MODE
but can be less for certain modes in special long registers.
On the vax, all registers are one word long. */
#define HARD_REGNO_NREGS(REGNO, MODE) \
((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
#define HARD_REGNO_MODE_OK(REGNO, MODE) 1
/* Value is 1 if it is a good idea to tie two pseudo registers
when one has mode MODE1 and one has mode MODE2.
If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
for any hard reg, then this must be 0 for correct output. */
#define MODES_TIEABLE_P(MODE1, MODE2) 1
/* Specify the registers used for certain standard purposes.
The values of these macros are register numbers. */
/* Register to use for pushing function arguments. */
#define STACK_POINTER_REGNUM 15
/* Base register for access to local variables of the function. */
#define FRAME_POINTER_REGNUM 14
/* Value should be nonzero if functions must have frame pointers.
Zero means the frame pointer need not be set up (and parms
may be accessed via the stack pointer) in functions that seem suitable.
This is computed in `reload', in reload1.c. */
#define FRAME_POINTER_REQUIRED 0
#define INITIAL_FRAME_POINTER_OFFSET(DEPTH) \
{ int regno; \
int offset = 0; \
for( regno=0; regno < FIRST_PSEUDO_REGISTER; regno++ ) \
if( regs_ever_live[regno] && !call_used_regs[regno] ) \
offset += 8; \
(DEPTH) = (offset + ((get_frame_size() + 3) & ~3) ); \
(DEPTH) = 0; \
}
/* Base register for access to arguments of the function. */
#define ARG_POINTER_REGNUM 14
/* Register in which static-chain is passed to a function. */
#define STATIC_CHAIN_REGNUM 0
/* Register in which address to store a structure value
is passed to a function. */
#define STRUCT_VALUE_REGNUM 1
/* Define the classes of registers for register constraints in the
machine description. Also define ranges of constants.
One of the classes must always be named ALL_REGS and include all hard regs.
If there is more than one class, another class must be named NO_REGS
and contain no registers.
The name GENERAL_REGS must be the name of a class (or an alias for
another name such as ALL_REGS). This is the class of registers
that is allowed by "g" or "r" in a register constraint.
Also, registers outside this class are allocated only when
instructions express preferences for them.
The classes must be numbered in nondecreasing order; that is,
a larger-numbered class must never be contained completely
in a smaller-numbered class.
For any two classes, it is very desirable that there be another
class that represents their union. */
/* The vax has only one kind of registers, so NO_REGS and ALL_REGS
are the only classes. */
enum reg_class { NO_REGS, GENERAL_REGS, ALL_REGS, LIM_REG_CLASSES };
#define N_REG_CLASSES (int) LIM_REG_CLASSES
/* Give names of register classes as strings for dump file. */
#define REG_CLASS_NAMES \
{"NO_REG