home *** CD-ROM | disk | FTP | other *** search
- /* $Id: matrix.c,v 1.22 1997/10/16 23:37:23 brianp Exp $ */
-
- /*
- * Mesa 3-D graphics library
- * Version: 2.5
- * Copyright (C) 1995-1997 Brian Paul
- *
- * This library is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Library General Public
- * License as published by the Free Software Foundation; either
- * version 2 of the License, or (at your option) any later version.
- *
- * This library is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Library General Public License for more details.
- *
- * You should have received a copy of the GNU Library General Public
- * License along with this library; if not, write to the Free
- * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
- */
-
-
- /*
- * $Log: matrix.c,v $
- * Revision 1.22 1997/10/16 23:37:23 brianp
- * fixed scotter's email address
- *
- * Revision 1.21 1997/08/13 01:54:34 brianp
- * new matrix invert code from Scott McCaskill
- *
- * Revision 1.20 1997/07/24 01:23:16 brianp
- * changed precompiled header symbol from PCH to PC_HEADER
- *
- * Revision 1.19 1997/05/30 02:21:43 brianp
- * gl_PopMatrix() set ctx->New*Matrix flag incorrectly
- *
- * Revision 1.18 1997/05/28 04:06:03 brianp
- * implemented projection near/far value stack for Driver.NearFar() function
- *
- * Revision 1.17 1997/05/28 03:25:43 brianp
- * added precompiled header (PCH) support
- *
- * Revision 1.16 1997/05/01 01:39:40 brianp
- * replace sqrt() with GL_SQRT()
- *
- * Revision 1.15 1997/04/21 01:20:41 brianp
- * added MATRIX_2D_NO_ROT
- *
- * Revision 1.14 1997/04/20 20:28:49 brianp
- * replaced abort() with gl_problem()
- *
- * Revision 1.13 1997/04/20 16:31:08 brianp
- * added NearFar device driver function
- *
- * Revision 1.12 1997/04/20 16:18:15 brianp
- * added glOrtho and glFrustum API pointers
- *
- * Revision 1.11 1997/04/01 04:23:53 brianp
- * added gl_analyze_*_matrix() functions
- *
- * Revision 1.10 1997/02/10 19:47:53 brianp
- * moved buffer resize code out of gl_Viewport() into gl_ResizeBuffersMESA()
- *
- * Revision 1.9 1997/01/31 23:32:40 brianp
- * now clear depth buffer after reallocation due to window resize
- *
- * Revision 1.8 1997/01/29 19:06:04 brianp
- * removed extra, local definition of Identity[] matrix
- *
- * Revision 1.7 1997/01/28 22:19:17 brianp
- * new matrix inversion code from Stephane Rehel
- *
- * Revision 1.6 1996/12/22 17:53:11 brianp
- * faster invert_matrix() function from scotter@iname.com
- *
- * Revision 1.5 1996/12/02 18:58:34 brianp
- * gl_rotation_matrix() now returns identity matrix if given a 0 rotation axis
- *
- * Revision 1.4 1996/09/27 01:29:05 brianp
- * added missing default cases to switches
- *
- * Revision 1.3 1996/09/15 14:18:37 brianp
- * now use GLframebuffer and GLvisual
- *
- * Revision 1.2 1996/09/14 06:46:04 brianp
- * better matmul() from Jacques Leroy
- *
- * Revision 1.1 1996/09/13 01:38:16 brianp
- * Initial revision
- *
- */
-
-
- /*
- * Matrix operations
- *
- *
- * NOTES:
- * 1. 4x4 transformation matrices are stored in memory in column major order.
- * 2. Points/vertices are to be thought of as column vectors.
- * 3. Transformation of a point p by a matrix M is: p' = M * p
- *
- */
-
-
- #ifdef PC_HEADER
- #include "all.h"
- #else
- #include <math.h>
- #include <stdio.h>
- #include <stdlib.h>
- #include <string.h>
- #include "context.h"
- #include "dlist.h"
- #include "macros.h"
- #include "matrix.h"
- #include "mmath.h"
- #include "types.h"
- #endif
-
-
-
- static GLfloat Identity[16] = {
- 1.0, 0.0, 0.0, 0.0,
- 0.0, 1.0, 0.0, 0.0,
- 0.0, 0.0, 1.0, 0.0,
- 0.0, 0.0, 0.0, 1.0
- };
-
-
-
-
- static void print_matrix( const GLfloat m[16] )
- {
- int i;
-
- for (i=0;i<4;i++) {
- printf("%f %f %f %f\n", m[i], m[4+i], m[8+i], m[12+i] );
- }
- }
-
-
-
- /*
- * Perform a 4x4 matrix multiplication (product = a x b).
- * Input: a, b - matrices to multiply
- * Output: product - product of a and b
- * WARNING: (product != b) assumed
- * NOTE: (product == a) allowed
- */
- static void matmul( GLfloat *product, const GLfloat *a, const GLfloat *b )
- {
- /* This matmul was contributed by Thomas Malik */
- GLint i;
-
- #define A(row,col) a[(col<<2)+row]
- #define B(row,col) b[(col<<2)+row]
- #define P(row,col) product[(col<<2)+row]
-
- /* i-te Zeile */
- for (i = 0; i < 4; i++) {
- GLfloat ai0=A(i,0), ai1=A(i,1), ai2=A(i,2), ai3=A(i,3);
- P(i,0) = ai0 * B(0,0) + ai1 * B(1,0) + ai2 * B(2,0) + ai3 * B(3,0);
- P(i,1) = ai0 * B(0,1) + ai1 * B(1,1) + ai2 * B(2,1) + ai3 * B(3,1);
- P(i,2) = ai0 * B(0,2) + ai1 * B(1,2) + ai2 * B(2,2) + ai3 * B(3,2);
- P(i,3) = ai0 * B(0,3) + ai1 * B(1,3) + ai2 * B(2,3) + ai3 * B(3,3);
- }
-
- #undef A
- #undef B
- #undef P
- }
-
-
-
- /*
- * Compute the inverse of a 4x4 matrix.
- *
- * From an algorithm by V. Strassen, 1969, _Numerishe Mathematik_, vol. 13,
- * pp. 354-356.
- * 60 multiplies, 24 additions, 10 subtractions, 8 negations, 2 divisions,
- * 48 assignments, _0_ branches
- *
- * This implementation by Scott McCaskill
- */
-
- typedef GLfloat Mat2[2][2];
-
- enum {
- M00 = 0, M01 = 4, M02 = 8, M03 = 12,
- M10 = 1, M11 = 5, M12 = 9, M13 = 13,
- M20 = 2, M21 = 6, M22 = 10,M23 = 14,
- M30 = 3, M31 = 7, M32 = 11,M33 = 15
- };
-
- static void invert_matrix_general( const GLfloat *m, GLfloat *out )
- {
- Mat2 r1, r2, r3, r4, r5, r6, r7;
- const GLfloat * A = m;
- GLfloat * C = out;
- GLfloat one_over_det;
-
- /*
- * A is the 4x4 source matrix (to be inverted).
- * C is the 4x4 destination matrix
- * a11 is the 2x2 matrix in the upper left quadrant of A
- * a12 is the 2x2 matrix in the upper right quadrant of A
- * a21 is the 2x2 matrix in the lower left quadrant of A
- * a22 is the 2x2 matrix in the lower right quadrant of A
- * similarly, cXX are the 2x2 quadrants of the destination matrix
- */
-
- /* R1 = inverse( a11 ) */
- one_over_det = 1.0f / ( ( A[M00] * A[M11] ) - ( A[M10] * A[M01] ) );
- r1[0][0] = one_over_det * A[M11];
- r1[0][1] = one_over_det * -A[M01];
- r1[1][0] = one_over_det * -A[M10];
- r1[1][1] = one_over_det * A[M00];
-
- /* R2 = a21 x R1 */
- r2[0][0] = A[M20] * r1[0][0] + A[M21] * r1[1][0];
- r2[0][1] = A[M20] * r1[0][1] + A[M21] * r1[1][1];
- r2[1][0] = A[M30] * r1[0][0] + A[M31] * r1[1][0];
- r2[1][1] = A[M30] * r1[0][1] + A[M31] * r1[1][1];
-
- /* R3 = R1 x a12 */
- r3[0][0] = r1[0][0] * A[M02] + r1[0][1] * A[M12];
- r3[0][1] = r1[0][0] * A[M03] + r1[0][1] * A[M13];
- r3[1][0] = r1[1][0] * A[M02] + r1[1][1] * A[M12];
- r3[1][1] = r1[1][0] * A[M03] + r1[1][1] * A[M13];
-
- /* R4 = a21 x R3 */
- r4[0][0] = A[M20] * r3[0][0] + A[M21] * r3[1][0];
- r4[0][1] = A[M20] * r3[0][1] + A[M21] * r3[1][1];
- r4[1][0] = A[M30] * r3[0][0] + A[M31] * r3[1][0];
- r4[1][1] = A[M30] * r3[0][1] + A[M31] * r3[1][1];
-
- /* R5 = R4 - a22 */
- r5[0][0] = r4[0][0] - A[M22];
- r5[0][1] = r4[0][1] - A[M23];
- r5[1][0] = r4[1][0] - A[M32];
- r5[1][1] = r4[1][1] - A[M33];
-
- /* R6 = inverse( R5 ) */
- one_over_det = 1.0f / ( ( r5[0][0] * r5[1][1] ) - ( r5[1][0] * r5[0][1] ) );
- r6[0][0] = one_over_det * r5[1][1];
- r6[0][1] = one_over_det * -r5[0][1];
- r6[1][0] = one_over_det * -r5[1][0];
- r6[1][1] = one_over_det * r5[0][0];
-
- /* c12 = R3 x R6 */
- C[M02] = r3[0][0] * r6[0][0] + r3[0][1] * r6[1][0];
- C[M03] = r3[0][0] * r6[0][1] + r3[0][1] * r6[1][1];
- C[M12] = r3[1][0] * r6[0][0] + r3[1][1] * r6[1][0];
- C[M13] = r3[1][0] * r6[0][1] + r3[1][1] * r6[1][1];
-
- /* c21 = R6 x R2 */
- C[M20] = r6[0][0] * r2[0][0] + r6[0][1] * r2[1][0];
- C[M21] = r6[0][0] * r2[0][1] + r6[0][1] * r2[1][1];
- C[M30] = r6[1][0] * r2[0][0] + r6[1][1] * r2[1][0];
- C[M31] = r6[1][0] * r2[0][1] + r6[1][1] * r2[1][1];
-
- /* R7 = R3 x c21 */
- r7[0][0] = r3[0][0] * C[M20] + r3[0][1] * C[M30];
- r7[0][1] = r3[0][0] * C[M21] + r3[0][1] * C[M31];
- r7[1][0] = r3[1][0] * C[M20] + r3[1][1] * C[M30];
- r7[1][1] = r3[1][0] * C[M21] + r3[1][1] * C[M31];
-
- /* c11 = R1 - R7 */
- C[M00] = r1[0][0] - r7[0][0];
- C[M01] = r1[0][1] - r7[0][1];
- C[M10] = r1[1][0] - r7[1][0];
- C[M11] = r1[1][1] - r7[1][1];
-
- /* c22 = -R6 */
- C[M22] = -r6[0][0];
- C[M23] = -r6[0][1];
- C[M32] = -r6[1][0];
- C[M33] = -r6[1][1];
- }
-
-
- /*
- * Invert matrix m. This algorithm contributed by Stephane Rehel
- * <rehel@worldnet.fr>
- */
- static void invert_matrix( const GLfloat *m, GLfloat *out )
- {
- /* NB. OpenGL Matrices are COLUMN major. */
- #define MAT(m,r,c) (m)[(c)*4+(r)]
-
- /* Here's some shorthand converting standard (row,column) to index. */
- #define m11 MAT(m,0,0)
- #define m12 MAT(m,0,1)
- #define m13 MAT(m,0,2)
- #define m14 MAT(m,0,3)
- #define m21 MAT(m,1,0)
- #define m22 MAT(m,1,1)
- #define m23 MAT(m,1,2)
- #define m24 MAT(m,1,3)
- #define m31 MAT(m,2,0)
- #define m32 MAT(m,2,1)
- #define m33 MAT(m,2,2)
- #define m34 MAT(m,2,3)
- #define m41 MAT(m,3,0)
- #define m42 MAT(m,3,1)
- #define m43 MAT(m,3,2)
- #define m44 MAT(m,3,3)
-
- register GLfloat det;
- GLfloat tmp[16]; /* Allow out == in. */
-
- if( m41 != 0. || m42 != 0. || m43 != 0. || m44 != 1. ) {
- invert_matrix_general(m, out);
- return;
- }
-
- /* Inverse = adjoint / det. (See linear algebra texts.)*/
-
- tmp[0]= m22 * m33 - m23 * m32;
- tmp[1]= m23 * m31 - m21 * m33;
- tmp[2]= m21 * m32 - m22 * m31;
-
- /* Compute determinant as early as possible using these cofactors. */
- det= m11 * tmp[0] + m12 * tmp[1] + m13 * tmp[2];
-
- /* Run singularity test. */
- if (det == 0.0F) {
- /* printf("invert_matrix: Warning: Singular matrix.\n"); */
- MEMCPY( out, Identity, 16*sizeof(GLfloat) );
- }
- else {
- GLfloat d12, d13, d23, d24, d34, d41;
- register GLfloat im11, im12, im13, im14;
-
- det= 1. / det;
-
- /* Compute rest of inverse. */
- tmp[0] *= det;
- tmp[1] *= det;
- tmp[2] *= det;
- tmp[3] = 0.;
-
- im11= m11 * det;
- im12= m12 * det;
- im13= m13 * det;
- im14= m14 * det;
- tmp[4] = im13 * m32 - im12 * m33;
- tmp[5] = im11 * m33 - im13 * m31;
- tmp[6] = im12 * m31 - im11 * m32;
- tmp[7] = 0.;
-
- /* Pre-compute 2x2 dets for first two rows when computing */
- /* cofactors of last two rows. */
- d12 = im11*m22 - m21*im12;
- d13 = im11*m23 - m21*im13;
- d23 = im12*m23 - m22*im13;
- d24 = im12*m24 - m22*im14;
- d34 = im13*m24 - m23*im14;
- d41 = im14*m21 - m24*im11;
-
- tmp[8] = d23;
- tmp[9] = -d13;
- tmp[10] = d12;
- tmp[11] = 0.;
-
- tmp[12] = -(m32 * d34 - m33 * d24 + m34 * d23);
- tmp[13] = (m31 * d34 + m33 * d41 + m34 * d13);
- tmp[14] = -(m31 * d24 + m32 * d41 + m34 * d12);
- tmp[15] = 1.;
-
- MEMCPY(out, tmp, 16*sizeof(GLfloat));
- }
-
- #undef m11
- #undef m12
- #undef m13
- #undef m14
- #undef m21
- #undef m22
- #undef m23
- #undef m24
- #undef m31
- #undef m32
- #undef m33
- #undef m34
- #undef m41
- #undef m42
- #undef m43
- #undef m44
- #undef MAT
- }
-
-
-
- /*
- * Determine if the given matrix is the identity matrix.
- */
- static GLboolean is_identity( const GLfloat m[16] )
- {
- if ( m[0]==1.0F && m[4]==0.0F && m[ 8]==0.0F && m[12]==0.0F
- && m[1]==0.0F && m[5]==1.0F && m[ 9]==0.0F && m[13]==0.0F
- && m[2]==0.0F && m[6]==0.0F && m[10]==1.0F && m[14]==0.0F
- && m[3]==0.0F && m[7]==0.0F && m[11]==0.0F && m[15]==1.0F) {
- return GL_TRUE;
- }
- else {
- return GL_FALSE;
- }
- }
-
-
- /*
- * Examine the current modelview matrix to determine its type.
- * Later we use the matrix type to optimize vertex transformations.
- */
- void gl_analyze_modelview_matrix( GLcontext *ctx )
- {
- const GLfloat *m = ctx->ModelViewMatrix;
- if (is_identity(m)) {
- ctx->ModelViewMatrixType = MATRIX_IDENTITY;
- }
- else if ( m[4]==0.0F && m[ 8]==0.0F
- && m[1]==0.0F && m[ 9]==0.0F
- && m[2]==0.0F && m[6]==0.0F && m[10]==1.0F && m[14]==0.0F
- && m[3]==0.0F && m[7]==0.0F && m[11]==0.0F && m[15]==1.0F) {
- ctx->ModelViewMatrixType = MATRIX_2D_NO_ROT;
- }
- else if ( m[ 8]==0.0F
- && m[ 9]==0.0F
- && m[2]==0.0F && m[6]==0.0F && m[10]==1.0F && m[14]==0.0F
- && m[3]==0.0F && m[7]==0.0F && m[11]==0.0F && m[15]==1.0F) {
- ctx->ModelViewMatrixType = MATRIX_2D;
- }
- else if (m[3]==0.0F && m[7]==0.0F && m[11]==0.0F && m[15]==1.0F) {
- ctx->ModelViewMatrixType = MATRIX_3D;
- }
- else {
- ctx->ModelViewMatrixType = MATRIX_GENERAL;
- }
-
- invert_matrix( ctx->ModelViewMatrix, ctx->ModelViewInv );
- ctx->NewModelViewMatrix = GL_FALSE;
- }
-
-
-
- /*
- * Examine the current projection matrix to determine its type.
- * Later we use the matrix type to optimize vertex transformations.
- */
- void gl_analyze_projection_matrix( GLcontext *ctx )
- {
- /* look for common-case ortho and perspective matrices */
- const GLfloat *m = ctx->ProjectionMatrix;
- if (is_identity(m)) {
- ctx->ProjectionMatrixType = MATRIX_IDENTITY;
- }
- else if ( m[4]==0.0F && m[8] ==0.0F
- && m[1]==0.0F && m[9] ==0.0F
- && m[2]==0.0F && m[6]==0.0F
- && m[3]==0.0F && m[7]==0.0F && m[11]==0.0F && m[15]==1.0F) {
- ctx->ProjectionMatrixType = MATRIX_ORTHO;
- }
- else if ( m[4]==0.0F && m[12]==0.0F
- && m[1]==0.0F && m[13]==0.0F
- && m[2]==0.0F && m[6]==0.0F
- && m[3]==0.0F && m[7]==0.0F && m[11]==-1.0F && m[15]==0.0F) {
- ctx->ProjectionMatrixType = MATRIX_PERSPECTIVE;
- }
- else {
- ctx->ProjectionMatrixType = MATRIX_GENERAL;
- }
-
- ctx->NewProjectionMatrix = GL_FALSE;
- }
-
-
-
- /*
- * Examine the current texture matrix to determine its type.
- * Later we use the matrix type to optimize texture coordinate transformations.
- */
- void gl_analyze_texture_matrix( GLcontext *ctx )
- {
- const GLfloat *m = ctx->TextureMatrix;
- if (is_identity(m)) {
- ctx->TextureMatrixType = MATRIX_IDENTITY;
- }
- else if ( m[ 8]==0.0F
- && m[ 9]==0.0F
- && m[2]==0.0F && m[6]==0.0F && m[10]==1.0F && m[14]==0.0F
- && m[3]==0.0F && m[7]==0.0F && m[11]==0.0F && m[15]==1.0F) {
- ctx->TextureMatrixType = MATRIX_2D;
- }
- else if (m[3]==0.0F && m[7]==0.0F && m[11]==0.0F && m[15]==1.0F) {
- ctx->TextureMatrixType = MATRIX_3D;
- }
- else {
- ctx->TextureMatrixType = MATRIX_GENERAL;
- }
-
- ctx->NewTextureMatrix = GL_FALSE;
- }
-
-
-
- void gl_Frustum( GLcontext *ctx,
- GLdouble left, GLdouble right,
- GLdouble bottom, GLdouble top,
- GLdouble nearval, GLdouble farval )
- {
- GLfloat x, y, a, b, c, d;
- GLfloat m[16];
-
- if (nearval<=0.0 || farval<=0.0) {
- gl_error( ctx, GL_INVALID_VALUE, "glFrustum(near or far)" );
- }
-
- x = (2.0*nearval) / (right-left);
- y = (2.0*nearval) / (top-bottom);
- a = (right+left) / (right-left);
- b = (top+bottom) / (top-bottom);
- c = -(farval+nearval) / ( farval-nearval);
- d = -(2.0*farval*nearval) / (farval-nearval); /* error? */
-
- #define M(row,col) m[col*4+row]
- M(0,0) = x; M(0,1) = 0.0F; M(0,2) = a; M(0,3) = 0.0F;
- M(1,0) = 0.0F; M(1,1) = y; M(1,2) = b; M(1,3) = 0.0F;
- M(2,0) = 0.0F; M(2,1) = 0.0F; M(2,2) = c; M(2,3) = d;
- M(3,0) = 0.0F; M(3,1) = 0.0F; M(3,2) = -1.0F; M(3,3) = 0.0F;
- #undef M
-
- gl_MultMatrixf( ctx, m );
-
-
- /* Need to keep a stack of near/far values in case the user push/pops
- * the projection matrix stack so that we can call Driver.NearFar()
- * after a pop.
- */
- ctx->NearFarStack[ctx->ProjectionStackDepth][0] = nearval;
- ctx->NearFarStack[ctx->ProjectionStackDepth][1] = farval;
-
- if (ctx->Driver.NearFar) {
- (*ctx->Driver.NearFar)( ctx, nearval, farval );
- }
- }
-
-
- void gl_Ortho( GLcontext *ctx,
- GLdouble left, GLdouble right,
- GLdouble bottom, GLdouble top,
- GLdouble nearval, GLdouble farval )
- {
- GLfloat x, y, z;
- GLfloat tx, ty, tz;
- GLfloat m[16];
-
- x = 2.0 / (right-left);
- y = 2.0 / (top-bottom);
- z = -2.0 / (farval-nearval);
- tx = -(right+left) / (right-left);
- ty = -(top+bottom) / (top-bottom);
- tz = -(farval+nearval) / (farval-nearval);
-
- #define M(row,col) m[col*4+row]
- M(0,0) = x; M(0,1) = 0.0F; M(0,2) = 0.0F; M(0,3) = tx;
- M(1,0) = 0.0F; M(1,1) = y; M(1,2) = 0.0F; M(1,3) = ty;
- M(2,0) = 0.0F; M(2,1) = 0.0F; M(2,2) = z; M(2,3) = tz;
- M(3,0) = 0.0F; M(3,1) = 0.0F; M(3,2) = 0.0F; M(3,3) = 1.0F;
- #undef M
-
- gl_MultMatrixf( ctx, m );
-
- if (ctx->Driver.NearFar) {
- (*ctx->Driver.NearFar)( ctx, nearval, farval );
- }
- }
-
-
- void gl_MatrixMode( GLcontext *ctx, GLenum mode )
- {
- if (INSIDE_BEGIN_END(ctx)) {
- gl_error( ctx, GL_INVALID_OPERATION, "glMatrixMode" );
- return;
- }
- switch (mode) {
- case GL_MODELVIEW:
- case GL_PROJECTION:
- case GL_TEXTURE:
- ctx->Transform.MatrixMode = mode;
- break;
- default:
- gl_error( ctx, GL_INVALID_ENUM, "glMatrixMode" );
- }
- }
-
-
-
- void gl_PushMatrix( GLcontext *ctx )
- {
- if (INSIDE_BEGIN_END(ctx)) {
- gl_error( ctx, GL_INVALID_OPERATION, "glPushMatrix" );
- return;
- }
- switch (ctx->Transform.MatrixMode) {
- case GL_MODELVIEW:
- if (ctx->ModelViewStackDepth>=MAX_MODELVIEW_STACK_DEPTH-1) {
- gl_error( ctx, GL_STACK_OVERFLOW, "glPushMatrix");
- return;
- }
- MEMCPY( ctx->ModelViewStack[ctx->ModelViewStackDepth],
- ctx->ModelViewMatrix,
- 16*sizeof(GLfloat) );
- ctx->ModelViewStackDepth++;
- break;
- case GL_PROJECTION:
- if (ctx->ProjectionStackDepth>=MAX_PROJECTION_STACK_DEPTH) {
- gl_error( ctx, GL_STACK_OVERFLOW, "glPushMatrix");
- return;
- }
- MEMCPY( ctx->ProjectionStack[ctx->ProjectionStackDepth],
- ctx->ProjectionMatrix,
- 16*sizeof(GLfloat) );
- ctx->ProjectionStackDepth++;
-
- /* Save near and far projection values */
- ctx->NearFarStack[ctx->ProjectionStackDepth][0]
- = ctx->NearFarStack[ctx->ProjectionStackDepth-1][0];
- ctx->NearFarStack[ctx->ProjectionStackDepth][1]
- = ctx->NearFarStack[ctx->ProjectionStackDepth-1][1];
- break;
- case GL_TEXTURE:
- if (ctx->TextureStackDepth>=MAX_TEXTURE_STACK_DEPTH) {
- gl_error( ctx, GL_STACK_OVERFLOW, "glPushMatrix");
- return;
- }
- MEMCPY( ctx->TextureStack[ctx->TextureStackDepth],
- ctx->TextureMatrix,
- 16*sizeof(GLfloat) );
- ctx->TextureStackDepth++;
- break;
- default:
- gl_problem(ctx, "Bad matrix mode in gl_PushMatrix");
- }
- }
-
-
-
- void gl_PopMatrix( GLcontext *ctx )
- {
- if (INSIDE_BEGIN_END(ctx)) {
- gl_error( ctx, GL_INVALID_OPERATION, "glPopMatrix" );
- return;
- }
- switch (ctx->Transform.MatrixMode) {
- case GL_MODELVIEW:
- if (ctx->ModelViewStackDepth==0) {
- gl_error( ctx, GL_STACK_UNDERFLOW, "glPopMatrix");
- return;
- }
- ctx->ModelViewStackDepth--;
- MEMCPY( ctx->ModelViewMatrix,
- ctx->ModelViewStack[ctx->ModelViewStackDepth],
- 16*sizeof(GLfloat) );
- ctx->NewModelViewMatrix = GL_TRUE;
- break;
- case GL_PROJECTION:
- if (ctx->ProjectionStackDepth==0) {
- gl_error( ctx, GL_STACK_UNDERFLOW, "glPopMatrix");
- return;
- }
- ctx->ProjectionStackDepth--;
- MEMCPY( ctx->ProjectionMatrix,
- ctx->ProjectionStack[ctx->ProjectionStackDepth],
- 16*sizeof(GLfloat) );
- ctx->NewProjectionMatrix = GL_TRUE;
-
- /* Device driver near/far values */
- {
- GLfloat nearVal = ctx->NearFarStack[ctx->ProjectionStackDepth][0];
- GLfloat farVal = ctx->NearFarStack[ctx->ProjectionStackDepth][1];
- if (ctx->Driver.NearFar) {
- (*ctx->Driver.NearFar)( ctx, nearVal, farVal );
- }
- }
- break;
- case GL_TEXTURE:
- if (ctx->TextureStackDepth==0) {
- gl_error( ctx, GL_STACK_UNDERFLOW, "glPopMatrix");
- return;
- }
- ctx->TextureStackDepth--;
- MEMCPY( ctx->TextureMatrix,
- ctx->TextureStack[ctx->TextureStackDepth],
- 16*sizeof(GLfloat) );
- ctx->NewTextureMatrix = GL_TRUE;
- break;
- default:
- gl_problem(ctx, "Bad matrix mode in gl_PopMatrix");
- }
- }
-
-
-
- void gl_LoadIdentity( GLcontext *ctx )
- {
- if (INSIDE_BEGIN_END(ctx)) {
- gl_error( ctx, GL_INVALID_OPERATION, "glLoadIdentity" );
- return;
- }
- switch (ctx->Transform.MatrixMode) {
- case GL_MODELVIEW:
- MEMCPY( ctx->ModelViewMatrix, Identity, 16*sizeof(GLfloat) );
- MEMCPY( ctx->ModelViewInv, Identity, 16*sizeof(GLfloat) );
- ctx->ModelViewMatrixType = MATRIX_IDENTITY;
- ctx->NewModelViewMatrix = GL_FALSE;
- break;
- case GL_PROJECTION:
- MEMCPY( ctx->ProjectionMatrix, Identity, 16*sizeof(GLfloat) );
- ctx->ProjectionMatrixType = MATRIX_IDENTITY;
- ctx->NewProjectionMatrix = GL_FALSE;
- break;
- case GL_TEXTURE:
- MEMCPY( ctx->TextureMatrix, Identity, 16*sizeof(GLfloat) );
- ctx->TextureMatrixType = MATRIX_IDENTITY;
- ctx->NewTextureMatrix = GL_FALSE;
- break;
- default:
- gl_problem(ctx, "Bad matrix mode in gl_LoadIdentity");
- }
- }
-
-
- void gl_LoadMatrixf( GLcontext *ctx, const GLfloat *m )
- {
- if (INSIDE_BEGIN_END(ctx)) {
- gl_error( ctx, GL_INVALID_OPERATION, "glLoadMatrix" );
- return;
- }
- switch (ctx->Transform.MatrixMode) {
- case GL_MODELVIEW:
- MEMCPY( ctx->ModelViewMatrix, m, 16*sizeof(GLfloat) );
- ctx->NewModelViewMatrix = GL_TRUE;
- break;
- case GL_PROJECTION:
- MEMCPY( ctx->ProjectionMatrix, m, 16*sizeof(GLfloat) );
- ctx->NewProjectionMatrix = GL_TRUE;
- break;
- case GL_TEXTURE:
- MEMCPY( ctx->TextureMatrix, m, 16*sizeof(GLfloat) );
- ctx->NewTextureMatrix = GL_TRUE;
- break;
- default:
- gl_problem(ctx, "Bad matrix mode in gl_LoadMatrixf");
- }
- }
-
-
-
- void gl_MultMatrixf( GLcontext *ctx, const GLfloat *m )
- {
- if (INSIDE_BEGIN_END(ctx)) {
- gl_error( ctx, GL_INVALID_OPERATION, "glMultMatrix" );
- return;
- }
- switch (ctx->Transform.MatrixMode) {
- case GL_MODELVIEW:
- matmul( ctx->ModelViewMatrix, ctx->ModelViewMatrix, m );
- ctx->NewModelViewMatrix = GL_TRUE;
- break;
- case GL_PROJECTION:
- matmul( ctx->ProjectionMatrix, ctx->ProjectionMatrix, m );
- ctx->NewProjectionMatrix = GL_TRUE;
- break;
- case GL_TEXTURE:
- matmul( ctx->TextureMatrix, ctx->TextureMatrix, m );
- ctx->NewTextureMatrix = GL_TRUE;
- break;
- default:
- gl_problem(ctx, "Bad matrix mode in gl_MultMatrixf");
- }
- }
-
-
-
- /*
- * Generate a 4x4 transformation matrix from glRotate parameters.
- */
- void gl_rotation_matrix( GLfloat angle, GLfloat x, GLfloat y, GLfloat z,
- GLfloat m[] )
- {
- /* This function contributed by Erich Boleyn (erich@uruk.org) */
- GLfloat mag, s, c;
- GLfloat xx, yy, zz, xy, yz, zx, xs, ys, zs, one_c;
-
- s = sin( angle * DEG2RAD );
- c = cos( angle * DEG2RAD );
-
- mag = GL_SQRT( x*x + y*y + z*z );
-
- if (mag == 0.0) {
- /* generate an identity matrix and return */
- MEMCPY(m, Identity, sizeof(GLfloat)*16);
- return;
- }
-
- x /= mag;
- y /= mag;
- z /= mag;
-
- #define M(row,col) m[col*4+row]
-
- /*
- * Arbitrary axis rotation matrix.
- *
- * This is composed of 5 matrices, Rz, Ry, T, Ry', Rz', multiplied
- * like so: Rz * Ry * T * Ry' * Rz'. T is the final rotation
- * (which is about the X-axis), and the two composite transforms
- * Ry' * Rz' and Rz * Ry are (respectively) the rotations necessary
- * from the arbitrary axis to the X-axis then back. They are
- * all elementary rotations.
- *
- * Rz' is a rotation about the Z-axis, to bring the axis vector
- * into the x-z plane. Then Ry' is applied, rotating about the
- * Y-axis to bring the axis vector parallel with the X-axis. The
- * rotation about the X-axis is then performed. Ry and Rz are
- * simply the respective inverse transforms to bring the arbitrary
- * axis back to it's original orientation. The first transforms
- * Rz' and Ry' are considered inverses, since the data from the
- * arbitrary axis gives you info on how to get to it, not how
- * to get away from it, and an inverse must be applied.
- *
- * The basic calculation used is to recognize that the arbitrary
- * axis vector (x, y, z), since it is of unit length, actually
- * represents the sines and cosines of the angles to rotate the
- * X-axis to the same orientation, with theta being the angle about
- * Z and phi the angle about Y (in the order described above)
- * as follows:
- *
- * cos ( theta ) = x / sqrt ( 1 - z^2 )
- * sin ( theta ) = y / sqrt ( 1 - z^2 )
- *
- * cos ( phi ) = sqrt ( 1 - z^2 )
- * sin ( phi ) = z
- *
- * Note that cos ( phi ) can further be inserted to the above
- * formulas:
- *
- * cos ( theta ) = x / cos ( phi )
- * sin ( theta ) = y / sin ( phi )
- *
- * ...etc. Because of those relations and the standard trigonometric
- * relations, it is pssible to reduce the transforms down to what
- * is used below. It may be that any primary axis chosen will give the
- * same results (modulo a sign convention) using thie method.
- *
- * Particularly nice is to notice that all divisions that might
- * have caused trouble when parallel to certain planes or
- * axis go away with care paid to reducing the expressions.
- * After checking, it does perform correctly under all cases, since
- * in all the cases of division where the denominator would have
- * been zero, the numerator would have been zero as well, giving
- * the expected result.
- */
-
- xx = x * x;
- yy = y * y;
- zz = z * z;
- xy = x * y;
- yz = y * z;
- zx = z * x;
- xs = x * s;
- ys = y * s;
- zs = z * s;
- one_c = 1.0F - c;
-
- M(0,0) = (one_c * xx) + c;
- M(0,1) = (one_c * xy) - zs;
- M(0,2) = (one_c * zx) + ys;
- M(0,3) = 0.0F;
-
- M(1,0) = (one_c * xy) + zs;
- M(1,1) = (one_c * yy) + c;
- M(1,2) = (one_c * yz) - xs;
- M(1,3) = 0.0F;
-
- M(2,0) = (one_c * zx) - ys;
- M(2,1) = (one_c * yz) + xs;
- M(2,2) = (one_c * zz) + c;
- M(2,3) = 0.0F;
-
- M(3,0) = 0.0F;
- M(3,1) = 0.0F;
- M(3,2) = 0.0F;
- M(3,3) = 1.0F;
-
- #undef M
- }
-
-
-
- void gl_Rotatef( GLcontext *ctx,
- GLfloat angle, GLfloat x, GLfloat y, GLfloat z )
- {
- GLfloat m[16];
- gl_rotation_matrix( angle, x, y, z, m );
- gl_MultMatrixf( ctx, m );
- }
-
-
-
- /*
- * Execute a glScale call
- */
- void gl_Scalef( GLcontext *ctx, GLfloat x, GLfloat y, GLfloat z )
- {
- GLfloat *m;
-
- if (INSIDE_BEGIN_END(ctx)) {
- gl_error( ctx, GL_INVALID_OPERATION, "glScale" );
- return;
- }
- switch (ctx->Transform.MatrixMode) {
- case GL_MODELVIEW:
- m = ctx->ModelViewMatrix;
- ctx->NewModelViewMatrix = GL_TRUE;
- break;
- case GL_PROJECTION:
- m = ctx->ProjectionMatrix;
- ctx->NewProjectionMatrix = GL_TRUE;
- break;
- case GL_TEXTURE:
- m = ctx->TextureMatrix;
- ctx->NewTextureMatrix = GL_TRUE;
- break;
- default:
- gl_problem(ctx, "Bad matrix mode in gl_Scalef");
- return;
- }
- m[0] *= x; m[4] *= y; m[8] *= z;
- m[1] *= x; m[5] *= y; m[9] *= z;
- m[2] *= x; m[6] *= y; m[10] *= z;
- m[3] *= x; m[7] *= y; m[11] *= z;
- }
-
-
-
- /*
- * Execute a glTranslate call
- */
- void gl_Translatef( GLcontext *ctx, GLfloat x, GLfloat y, GLfloat z )
- {
- GLfloat *m;
- if (INSIDE_BEGIN_END(ctx)) {
- gl_error( ctx, GL_INVALID_OPERATION, "glTranslate" );
- return;
- }
- switch (ctx->Transform.MatrixMode) {
- case GL_MODELVIEW:
- m = ctx->ModelViewMatrix;
- ctx->NewModelViewMatrix = GL_TRUE;
- break;
- case GL_PROJECTION:
- m = ctx->ProjectionMatrix;
- ctx->NewProjectionMatrix = GL_TRUE;
- break;
- case GL_TEXTURE:
- m = ctx->TextureMatrix;
- ctx->NewTextureMatrix = GL_TRUE;
- break;
- default:
- gl_problem(ctx, "Bad matrix mode in gl_Translatef");
- return;
- }
-
- m[12] = m[0] * x + m[4] * y + m[8] * z + m[12];
- m[13] = m[1] * x + m[5] * y + m[9] * z + m[13];
- m[14] = m[2] * x + m[6] * y + m[10] * z + m[14];
- m[15] = m[3] * x + m[7] * y + m[11] * z + m[15];
- }
-
-
-
-
- /*
- * Define a new viewport and reallocate auxillary buffers if the size of
- * the window (color buffer) has changed.
- */
- void gl_Viewport( GLcontext *ctx,
- GLint x, GLint y, GLsizei width, GLsizei height )
- {
- if (width<0 || height<0) {
- gl_error( ctx, GL_INVALID_VALUE, "glViewport" );
- return;
- }
- if (INSIDE_BEGIN_END(ctx)) {
- gl_error( ctx, GL_INVALID_OPERATION, "glViewport" );
- return;
- }
-
- /* clamp width, and height to implementation dependent range */
- width = CLAMP( width, 1, MAX_WIDTH );
- height = CLAMP( height, 1, MAX_HEIGHT );
- /* Save viewport */
- ctx->Viewport.X = x;
- ctx->Viewport.Width = width;
- ctx->Viewport.Y = y;
- ctx->Viewport.Height = height;
-
- /* compute scale and bias values */
- ctx->Viewport.Sx = (GLfloat) width / 2.0F;
- ctx->Viewport.Tx = ctx->Viewport.Sx + x;
- ctx->Viewport.Sy = (GLfloat) height / 2.0F;
- ctx->Viewport.Ty = ctx->Viewport.Sy + y;
-
- ctx->NewState |= NEW_ALL; /* just to be safe */
-
- /* Check if window/buffer has been resized and if so, reallocate the
- * ancillary buffers.
- */
- gl_ResizeBuffersMESA(ctx);
- }
-