home *** CD-ROM | disk | FTP | other *** search
- Xref: sparky sci.math:14774 sci.math.symbolic:2947
- Newsgroups: sci.math,sci.math.symbolic
- Path: sparky!uunet!wri!news
- From: victor@tuamotu.wri.com (Victor Adamchik)
- Subject: Re: Help wanted in integration.
- Message-ID: <1992Nov11.211417.14722@wri.com>
- Sender: news@wri.com
- Nntp-Posting-Host: tuamotu.wri.com
- Organization: Wolfram Research, Inc.
- References: <1992Nov10.235258.8777@ac.dal.ca>
- Date: Wed, 11 Nov 1992 21:14:17 GMT
- Lines: 46
-
- In article <1992Nov10.235258.8777@ac.dal.ca> cordes@ac.dal.ca (John Cordes)
- writes:
- > To those who have followed this thread:
- >
- > Sorry! I believe there is one more correction to make, for the case d=c
- > only. See below.
-
- <stuff deleted>
-
- > Alas, my algebra did go wrong after all. The corrected result (for the
- > case d = c, a > b) is as above but without the factor 31, thus:
- >
- > (1/32) * Pi^2 * b / c^2 + Pi^4 * b^2 * (a-b/3) / 8.
- >
- > This evaluates to 328.981001... for a = 4, b = 3, c = 2, and so is now in
- > agreement with the numerical integration.
- >
- >
- > John Cordes, Dept. of Physics,
- > Dalhousie University, Halifax, N.S.,
- > Canada B3H 3J5 Internet: cordes@ac.dal.ca
-
-
- I got the same result for d = c, a > b.
- For b > a it is
-
- (a*Pi^2*(3 - 4*a^2*c^2*Pi^2 + 12*a*b*c^2*Pi^2))/(96*c^2)
-
- So finally we have:
-
- for integers a,b,c and d:
-
- 1. c != d
-
- if 0 < a <= b then (a*(c^2 + d^2)*Pi^2)/(4*(c^2 - d^2)^2)
- if 0 < b <= a then (b*(c^2 + d^2)*Pi^2)/(4*(c^2 - d^2)^2)
-
- 2. c == d
-
- if 0 < a <= b then (a*Pi^2*(3 - 4*a^2*c^2*Pi^2 + 12*a*b*c^2*Pi^2))/(96*c^2)
- if 0 < b <= a then (b*Pi^2*(3 - 4*b^2*c^2*Pi^2 + 12*a*b*c^2*Pi^2))/(96*c^2)
-
- --
- Victor Adamchik
- victor@wri.com
-
-