home *** CD-ROM | disk | FTP | other *** search
- Path: sparky!uunet!mcsun!Germany.EU.net!ira.uka.de!ira.uka.de!chx400!unine.ch!anazerad
- From: Pascal.Azerad@maths.unine.ch (Pascal A. AZERAD)
- Newsgroups: sci.math
- Subject: Summary Re: de Rham currents
- Message-ID: <1992Nov11.163829.941@unine.ch>
- Date: 11 Nov 92 16:38:29 GMT
- Organization: University of Neuchatel, Switzerland
- Lines: 93
-
- My best thanks to all those who personally answered me.
- I thought a summary might be useful to others. In the meantime, I
- tried to study De Rham's book,very good indeed though very concise.
- For the english-speaking audience it is now published
- by Springer under the title "Differentiable manifolds, forms, currents,
- harmonic forms" I think.
- We will soon organize an informal seminar here at Neuchatel,
- with someone actually using thoroughly currents in mathematical physics.
-
- Now my question was:
- : Bonjour netters!
- : I am working in applied mathematics and I would like to use
- : systematically differential forms and de Rham currents. But
- : de Rham's famous book is a bit esoteric to me. On the other hand
- : most books on differential forms do not mention currents. Currents
- : are in a certain sens generalised differential forms, i. e. whose
- : coefficients are distributions instead of functions.
- : Does anyone know where to find a understandable exposition of the
- : theory of currents?
- : Thank you.
- : --
- : Pascal Azerad "Les mathematiques sont simples,
- : Institut de mathematiques c'est nous qui sommes compliques."
- : Universite de Neuchatel
- : Switzerland.
- :
- : Pascal.Azerad@maths.unine.ch
-
- -----------------------------------------------------------------------
- ------------------------------------------------------------------------
-
- You might try the book "Geometric Measure Theory: A Beginner's Guide" by
- Frank Morgan. It's published by Academic Press. The book is intended to be
- an introduction to Federer's definitive treatment of Geometric Measure
- Theory, but it is a nice introduction to the concepts you mentioned in
- your posting.
-
- -- <<Tim Murdoch>> (USA)
-
- ------------------------------------------------------------------------
- ------------------------------------------------------------------------
-
- You want to look for books on geometric measure theory. Federer's
- book by that title is very good, in a sense, but hard to read.
- Fred Almgren's little book on the Plateau problem is a very good
- introduction. I believe there are more recent books, but I can't
- give you any references. Look for books on geometric measure
- theory. The names Allard, Bob Hardt, Almgren might be good clues.
-
- This stuff has been used in geometry a lot, particularly in
- the study of minimal surfaces and minimal submanifolds.
-
- This is a little outside of my specialty, which is why I can't
- give you any more specific help.
-
- David H. Wagner (USA)
-
- ------------------------------------------------------------------------
- ------------------------------------------------------------------------
-
- Essayez
-
- Morgan, Introduction to Geometric Measure Theory, AcPress
- ou
- le Chap.3 de Noguchi-Ochiai Geometric Theory of several complex variables, AMS
- --
-
- Carlos Klimann (France)
-
- ------------------------------------------------------------------------
- ------------------------------------------------------------------------
-
- In article <1992Oct28.120638.927@unine.ch> you write:
- Connais-tu la "bible" de Dieudonne, Elements d'Analyse? Dans
- le chapitre 17 (ou est-ce 18, je ne suis plus sur), il introduit
- les courants, mais ce ne sont pas des formes differentielles
- avec coefficients dans les distributions, mais plutot des
- elements duaux aux formes differentiels. Tout ce que l'on peut
- faire avec les formes, on peut le faire avec les formes,
- avec la seule difference que l'operateur de bord diminue
- le degree. Comme ca, on obtient une theorie de homologie
- duale a la theorie de cohomologie de de Rham.
-
- Hope this helps
- Andreas Mueller (Germany)
-
- --
- Pascal Azerad "Les mathematiques sont simples,
- Institut de mathematiques c'est nous qui sommes compliques."
- Universite de Neuchatel
- Switzerland.
-
- Pascal.Azerad@maths.unine.ch
-