home *** CD-ROM | disk | FTP | other *** search
- Newsgroups: sci.math
- Path: sparky!uunet!utcsri!torn!csd.unb.ca!morgan.ucs.mun.ca!cs.mun.ca!riemann.math.mun.ca!cory
- From: cory@riemann.math.mun.ca (Cory C. Pye)
- Subject: Re: Simple Diff Eq
- Message-ID: <1992Nov9.121723.8814@cs.mun.ca>
- Sender: usenet@cs.mun.ca (NNTP server account)
- Organization: Chem Dept., Memorial University of Newfoundland
- References: <13390031@hpspdla.spd.HP.COM> <1992Nov8.191725.14856@athena.mit.edu>
- Date: Mon, 9 Nov 1992 12:17:23 GMT
- Lines: 20
-
- In article <1992Nov8.191725.14856@athena.mit.edu> frisch1@athena.mit.edu (Jonathan Katz) writes:
- >In article <13390031@hpspdla.spd.HP.COM>, ric@hpspdla.spd.HP.COM (Ric Peregrino) writes:
- >|> I've come by a simple differential equation that I'm interested in:
- >|>
- >|> df(x)/dx - 1/f(x) = 0
- >|>
- >
- >I don't know what kind of information you're looking for, but the answer is
- >f(x)=(2x)^.5 ^^^
- >(the square root of 2x)
-
- That should read 'an' answer. A family of solutions exists, namely
-
- f(x) = (2(x+c))^.5
-
- where c is any constant.
- -Cory Pye
-
- --
- Cory Pye, grad student in Theoretical Chemistry.
-