home *** CD-ROM | disk | FTP | other *** search
- Path: sparky!uunet!mcsun!uknet!doc.ic.ac.uk!aixssc.uk.ibm.com!yktnews!admin!newsgate.watson.ibm.com!news.ans.net!rpi!zaphod.mps.ohio-state.edu!cs.utexas.edu!sdd.hp.com!elroy.jpl.nasa.gov!news.claremont.edu!ucivax!news.service.uci.edu!beckman.com!dn66!a_rubin
- From: a_rubin@dsg4.dse.beckman.com (Arthur Rubin)
- Newsgroups: sci.math
- Subject: Re: Simple Diff Eq
- Message-ID: <a_rubin.721331190@dn66>
- Date: 9 Nov 92 17:46:30 GMT
- References: <13390031@hpspdla.spd.HP.COM>
- Organization: Beckman Instruments, Inc.
- Lines: 26
- Nntp-Posting-Host: dn66.dse.beckman.com
-
- In <13390031@hpspdla.spd.HP.COM> ric@hpspdla.spd.HP.COM (Ric Peregrino) writes:
-
-
- >Hello sci.math,
-
- >I've come by a simple differential equation that I'm interested in:
-
- >df(x)/dx - 1/f(x) = 0
-
- Mathematica 2.0 for HP Apollo Domain/OS
- Copyright 1988-91 Wolfram Research, Inc.
- -- Display Manager graphics initialized --
-
- In[1]:= DSolve[f'[x] == 1/f[x],f[x],x]
-
- Out[1]= {{f[x] -> Sqrt[2 x + 2 C[1]]}, {f[x] -> -Sqrt[2 x + 2 C[1]]}}
-
- With that information, you should be able to construct a proof. (And
- Mathematica's answer, is, for once, correct and complete.)
-
-
- --
- Arthur L. Rubin: a_rubin@dsg4.dse.beckman.com (work) Beckman Instruments/Brea
- 216-5888@mcimail.com 70707.453@compuserve.com arthur@pnet01.cts.com (personal)
- My opinions are my own, and do not represent those of my employer.
- My interaction with our news system is unstable; please mail anything important.
-