home *** CD-ROM | disk | FTP | other *** search
- Newsgroups: sci.math
- Path: sparky!uunet!psinntp!dorsai.com!mutation
- From: mutation@dorsai.com (Florian Lengyel)
- Subject: Mathematical Monthly problem
- Message-ID: <1992Nov6.081931.3853@dorsai.com>
- Organization: The Dorsai Embassy +1.718.729.5018
- X-Newsreader: Tin 1.1 PL4
- Date: Fri, 6 Nov 1992 08:19:31 GMT
- Lines: 201
-
- I would appreciate someone giving me a trivial reason why I misunderstood
- the following trivial problem from the American Mathematical Monthly:
-
- E3427. {\sl Proposed by R. Padmanabhan, N.S. Mendelson, and B. Wolk,
- University of Manitoba, Winnipeg, Canada}
- \medskip
-
- My trivial solution follows:
-
- Let $S$ denote the set obtained by formally adjoining an element $e$
- to the set {\bf Q} of rational numbers. On $S$ define a binary operation
- $\circ$ as follows:
- $$
- \eqalign{ % first eqalign in this math display because only one & is
- % allowed per \eqalign and this display requires two of them!
- p \circ q &= (3 + pq)/(p + q) \cr
- p \circ q &= e \cr
- x \circ e &= x \cr
- } % end of first eqalign
- \qquad % leave some room (which is needed)
- \eqalign{ % second eqalign in this math display
- &{{\sl if\ }} p \in {\bf Q}, q \in {\bf Q}, p \ne q, \cr
- &{{\sl if\ }} p \in {\bf Q}, q \in {\bf Q} , p = -q, \cr
- &{\sl for\ all\ } x \in S. \cr
- } % end of second eqalign
- $$
- (a) Prove that $(S, \circ)$ is an abelian group isomorphic to a subgroup
- of the real numbers.
- \smallskip\noindent
- (b) If $p$ is a positive rational number, put $p_1 = p, p_2 = p\circ p,
- p_3 = p\circ p\circ p, \ldots$. Show that $\lim_{n \to \infty} p_n$ exists
- and find the limit. For which values of p is the sequence
- $\{p_n\}_{n=1}^\infty$ monotonic?
-
- \medskip
- {\baselineskip = 2\baselineskip
- To show (a), it suffices to exhibit a bijection $f: S \to {\bf R}^{\ne 0}$
- such that the image of $f$ is a subgroup of $({\bf R}^{\ne 0}, *)$ and
- $\forall x, y \in S, f(x \circ y) = f(x)f(y)$. In that case the axioms
- for an abelian group will be satisfied by $(S, \circ)$ by virtue of
- $x \circ y = f^{-1}(f(x)f(y))$ and because these axioms hold for
- $({\bf R}^{\ne 0}, *)$.
-
- A mapping $f: S \to {\bf R}$ can be obtained by differentiating the
- homomorphism equation (interpreted over {\bf R} with $p \ne -q$,
- for the time being) $f(p \circ q) = f(p) f(q)$ with respect to $p$:
- $$
- f'\left(3 + pq \over p + q\right)
- \left(q^2 - 3 \over (p + q)^2 \right)
- = f'(p) f(q)
- $$
- For fixed $q$, $p = \pm\sqrt{3}$ is a fixed point of
- $p \mapsto p \circ q$:
- $$
- {3 + pq \over p + q} = p \Leftrightarrow 3 + pq = p^2 + pq
- \Leftrightarrow p^2 = 3.
- $$
- Therefore,
- $$
- f'(\sqrt{3})
- { (q - \sqrt{3})(q + \sqrt{3}) \over (q + \sqrt{3})(q + \sqrt{3}) }
- = f'(\sqrt{3})f(q) \Rightarrow f(q) =
- { q - \sqrt{3} \over q + \sqrt{3} }.
- $$
- } % \baselineskip
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- % New Page!
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \vfill\eject
- \centerline{ Florian Lengyel, 35--37 West 64th Street, Apt. 2H, NY 10023.
- (212) 580--8188. }
- \bigskip
-
- {\baselineskip = 2\baselineskip
- {\sl NOTE: The statement of the problem leaves open the value of
- $\circ : S \times S \to S$ on $\{e\}\times {\bf Q}$; however,
- if $(S, \circ)$ defined as above is a group then $e$ must be its
- identity element:
- $ \exists x\in {\bf Q}, \forall y \in {\bf Q}, y \circ x = x $
- implies that $x = \pm\sqrt{3}$, a contradiction. The only possible way to
- complete the definition of $\circ$ so that $(S, \circ)$ will be
- a group is to define $e \circ x = x$ for each $x \in S$; any other
- assignment of values to $e \circ x \in S$ for $x \in S$ will
- not complete the definition of $\circ$ to a group operation.
- From now on it will be assumed that $x \circ e = e \circ x = x$
- for all $x \in S$. } % slanted type for emphasis.
- \medskip
-
- Define a mapping $f : S \to {\bf R}^{\ne 0}$ by
- $$
- p \mapsto
- \cases{
- {\displaystyle p - \sqrt{3} \over\displaystyle p + \sqrt{3}}
- &if $p \in {\bf Q}$;\cr
- &\cr
- 1 &if $p = e \in S$.\cr
- } % \cases
- $$
- The inverse of $f$ on $f(S)$ is given by
- $$
- f^{-1}(x) =
- \cases{
- {\displaystyle x + 1 \over\displaystyle 1 - x}\sqrt{3}
- &if $ x \in f(S) \wedge x \ne 1$;\cr
- &\cr
- e &if $x = 1$\cr
- } % \cases
- $$
- Claim: $\forall x, y \in S, f(x \circ y) = f(x)f(y)$ (for the
- corrected definition of $\circ$ in the statement of the problem).
- For $x, y \in {\bf Q}, x \ne -y$:
- $$
- f(x \circ y) =
- f\left( { 3 + xy \over x + y }\right) =
- { \displaystyle{ 3 + xy \over x + y } - \sqrt{3}
- \over
- \displaystyle{ 3 + xy \over x + y } + \sqrt{3}
- } =
- { xy - (x+y)\sqrt{3} + 3
- \over
- xy + (x+y)\sqrt{3} + 3
- } =
- {x-\sqrt{3} \over x+\sqrt{3}} {y-\sqrt{3} \over y+\sqrt{3}}
- = f(x)f(y)
- $$
- For $x, y \in {\bf Q}, x = -y, f(x \circ y) = f(e) = 1 = f(x)f(x)^{-1}
- = f(x)f(y)$. For $x \in S, f(x \circ e) = f(x) = f(x)f(e) = f(e)f(x) =
- f(e \circ x).$
-
- Note that $f(S)$ is a multiplicative subgroup of ${\bf R^{\ne 0}}$, so that
- the relation $\forall x, y \in S, x \circ y = f^{-1}(f(x)f(y))$
- makes $(S, \circ)$ into abelian group,
- isomorphic to $(f(S), *)$ under $f : S \to f(S)$.
-
- \medskip
-
- For (b), the limit of the sequence $\{p_n\}_{n = 1}^\infty$ is $\sqrt{3}$;
- the sequence is monotonic for $p > \sqrt{3}$.
-
- For the first assertion, notice that
- $ f(p_n) = f(p \circ {\ldots\atop n} \circ p) = f(p)^n =
- \displaystyle{\left( { p - \sqrt{3}} \over {p + \sqrt{3}} \right)^n}.
- $
- } % \baselineskip
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- % New Page !!
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \vfill\eject
- \centerline{ Florian Lengyel, 35--37 West 64th Street, Apt. 2H, NY 10023.
- (212) 580--8188. }
- \bigskip
-
- {\baselineskip = 2\baselineskip
-
- For $p > 0$ we have
- $$
- \left|{ {p - \sqrt{3}} \over {p + \sqrt{3}}}\right| < 1 \Leftrightarrow
- -1 < { p - \sqrt{3} \over p + \sqrt{3} } < 1 \Leftrightarrow
- -p - \sqrt{3} < p - \sqrt{3} < p + \sqrt{3} \Leftrightarrow
- -p < p < p + 2 \sqrt{3}
- $$
- which is true since $p > 0$; this implies
- $\displaystyle{
- \lim_{n \to \infty} \left({{p - \sqrt{3}} \over {p + \sqrt{3}}}\right)^n = 0
- }$.
- \smallskip\noindent
- By continuity of the inverse,
- $$
- \lim_{n \to \infty} p_n =
- \lim_{n \to \infty} f^{-1}(f(p_n)) =
- f^{-1}(\lim_{n \to \infty} f(p_n)) =
- f^{-1}(0) = \sqrt{3}.
- $$
- For the second assertion, notice that $f$ is order preserving
- on ${\bf Q}^{> 0}$ (and on ${\bf R}^{> 0}$ for that matter):
- $$
- {{p - \sqrt{3}} \over {p + \sqrt{3}}} < {{q - \sqrt{3}} \over {q + \sqrt{3}}}
- \Leftrightarrow
- pq + (p-q)\sqrt{3} + 3 < pq + (q-p)\sqrt{3} + 3
- \Leftrightarrow
- p - q < q - p
- \Leftrightarrow
- 2p < 2q
- \Leftrightarrow p < q.
- $$
- For $ 0 < p < \sqrt{3},
- \displaystyle{\left(p - \sqrt{3} \over p + \sqrt{3}\right)^n} $
- oscillates around 0: since $f$ (and so $f^{-1}$) is order preserving,
- $\{p_n\}_{n=1}^{\infty}$
- is not monotonic.
- On the other hand,
- if $p > \sqrt{3}$, the sequence
- $ \displaystyle{\left(p - \sqrt{3} \over p + \sqrt{3}\right)^n} $
- strictly decreases to zero; since $f^{-1}$ is order preserving,
- $\{p_n\}_{n=1}^{\infty}$ is monotonic.
- } % \baselineskip
- \bye
- --
- MUTATION@DORSAI.COM
- FLORIAN@NEOTERIC.COM
-