home *** CD-ROM | disk | FTP | other *** search
- Newsgroups: sci.math
- Path: sparky!uunet!mnemosyne.cs.du.edu!nyx!fburton
- From: fburton@nyx.cs.du.edu (Francis Burton)
- Subject: Surface area of ellipsoid
- Message-ID: <1992Nov5.142635.25873@mnemosyne.cs.du.edu>
- Sender: usenet@mnemosyne.cs.du.edu (netnews admin account)
- Organization: Nyx, Public Access Unix @ U. of Denver Math/CS dept.
- Date: Thu, 5 Nov 92 14:26:35 GMT
- Lines: 47
-
- For an ellipsoid with three axis radii a, b and c, two of them equal
- e.g. a=b, the surface A area can be obtained by integrating the swept-
- round perimeter (surface area of solid of rotation) thus:
-
- /x=c ___________________
- 2 | / 4 2 2 2
- A = 2 pi a/c | / c + (a - c ) x dx
- | \/
- /x=-c
-
-
- For c > a, this turns out to be
-
- -1 ___________
- (sin (z) + a.z/c) / 2 2
- A = 2 pi a c ------------------, z = / 1 - a /c
- z \/
-
-
- and for c < a
-
- -1 ___________
- (sinh (z) + a.z/c) / 2 2
- A = 2 pi a c -------------------, z = / a /c - 1
- z \/
-
- (note sinh vs sin).
-
-
- That's about as far as my math goes, and I am having trouble finding
- an expression for the surface area of an ellipsoid where a, b and c
- are ALL UNEQUAL. Why is it that the expression for surface area
- becomes so complicated when a sphere is squashed, in marked contrast
- to the equivalent volume formulae?
-
- Can any of you REAL mathematicians supply a useable formula?
-
- I should mention that this is not homework: I'm a physiologist with
- an interest in the mechanical properties of sarcolemmal vesicles (tiny
- deformable spheres of muscle membrane).
-
- Thanks in advance for your help.
-
- --
- Francis Burton Physiology, Glasgow University, Glasgow G12 8QQ, Scotland.
- 041 339 8855 x8085 | JANET: F.L.Burton@glasgow.ac.uk !net: via mcsun & uknet
- "A horse! A horse!" | INTERNET: via nsfnet-relay.ac.uk BITNET: via UKACRL
-