home *** CD-ROM | disk | FTP | other *** search
- Path: sparky!uunet!mcsun!uknet!pavo.csi.cam.ac.uk!emu.pmms.cam.ac.uk!rgep
- From: rgep@emu.pmms.cam.ac.uk (Richard Pinch)
- Newsgroups: sci.math
- Subject: Even pseudoprimes up to 10^12
- Summary: There are 155 even pseudoprimes up to 10^12
- Keywords: Pseudoprime
- Message-ID: <1992Oct16.142400.13541@infodev.cam.ac.uk>
- Date: 16 Oct 92 14:24:00 GMT
- Sender: R.G.E.Pinch@pmms.cam.ac.uk
- Organization: DPMMS University of Cambridge
- Lines: 169
- Nntp-Posting-Host: emu.pmms.cam.ac.uk
-
- Even pseudoprimes up to 10^12
-
- The list of pseudoprimes up to 10^12 which I announced in June
- were those satisfying 2^N-1 == 1 modulo N. Some people use
- the definition 2^N == 2 modulo N, which allows the possiblity
- of even N.
-
- There are 155 even pseudoprimes up to 10^12. The list follows.
-
- Richard Pinch
- Dept of Pure Mathematics and Mathematical Statistics
- University of Cambridge
-
- 161038 2 73 1103
- 215326 2 23 31 151
- 2568226 2 23 31 1801
- 3020626 2 7 359 601
- 7866046 2 23 271 631
- 9115426 2 31 233 631
- 49699666 2 311 79903
- 143742226 2 23 31 100801
- 161292286 2 127 199 3191
- 196116194 2 127 599 1289
- 209665666 2 7 89 191 881
- 213388066 2 23 31 151 991
- 293974066 2 73 631 3191
- 336408382 2 73 1103 2089
- 377994926 2 23 89 127 727
- 410857426 2 7 191 153649
- 665387746 2 23 3463 4177
- 667363522 2 7 5471 8713
- 672655726 2 73 1103 4177
- 760569694 2 1319 288313
- 1066079026 2 23 31 151 4951
- 1105826338 2 23 73 127 2593
- 1423998226 2 7 79 271 4751
- 1451887438 2 79 89 223 463
- 1610063326 2 73 2089 5279
- 2001038066 2 47 311 68449
- 2138882626 2 73 3191 4591
- 2952654706 2 31 71 631 1063
- 3220041826 2 73 103 233 919
- 3434672242 2 727 911 2593
- 4338249646 2 4721 459463
- 4783964626 2 7 23 73 271 751
- 5269424734 2 7 1433 262657
- 5820708466 2 79 3257 11311
- 6182224786 2 23 31 151 28711
- 6381449614 2 73 199 239 919
- 8356926046 2 7 79 7555991
- 8419609486 2 31 2441 55633
- 9548385826 2 7 31 89 247201
- 9895191538 2 127 1289 30223
- 10504379326 2 7 31 89 151 1801
- 11675882626 2 151 2143 18041
- 14184805006 2 71 127 151 5209
- 14731729666 2 31 4271 55633
- 14965276226 2 31 223 601 1801
- 14973142786 2 7 31 151 228479
- 15369282226 2 23 151 199 11119
- 15660993826 2 73 601 178481
- 16667060194 2 47 5209 34039
- 16732427362 2 7 79 1847 8191
- 18411253246 2 71 89 127 11471
- 18661908574 2 89 127 463 1783
- 19252624546 2 71 1103 122921
- 23360021026 2 151 383 201961
- 23494981966 2 127 1289 71761
- 26429263246 2 23 73 89 191 463
- 27355580686 2 7 73 103 151 1721
- 28087608418 2 23 15241 40063
- 29712533746 2 7 1823 1164193
- 30789370162 2 73 167 487 2593
- 30910262626 2 23 31 151 143551
- 34439472946 2 73 271 870431
- 35239366306 2 1063 3511 4721
- 35921441746 2 127 2143 65993
- 37130195614 2 47 337 479 2447
- 38523731842 2 73 103 2561759
- 43487454286 2 23 31 151 201961
- 44849716066 2 47 89 1289 4159
- 45436160386 2 199 743 153649
- 48930395086 2 23 23311 45631
- 74562118786 2 199 337 631 881
- 77404107886 2 7 31 79 151 14951
- 79204064626 2 71 337 919 1801
- 81473324626 2 23 1801 983431
- 82284719986 2 7 31 79 2399951
- 83720640862 2 73 89 199 32377
- 85898088046 2 31 71 127 153649
- 95553085486 2 89 4423 121369
- 98730252226 2 23 31 601 115201
- 100320423886 2 31 73 89 271 919
- 104987373454 2 73 1567 458897
- 105990932734 2 239 2143 103471
- 107427982366 2 23 31 233 367 881
- 116344653886 2 73 271 2940521
- 126217792286 2 431 1103 132751
- 131282477602 2 89 19471 37879
- 134744844466 2 31 463 1471 3191
- 136767694402 2 79 1087 796337
- 141144077746 2 7 31 89 631 5791
- 154550451826 2 23 31 151 717751
- 155783377198 2 167 2089 223273
- 161097973246 2 7 199 3191 18121
- 173299248046 2 73 191 991 6271
- 178830663166 2 89 127 271 29191
- 183689075122 2 7 647 2143 9463
- 188481991006 2 31 151 223 90281
- 193205875006 2 47 73 151 199 937
- 198503648066 2 31 2441 1311623
- 205641055918 2 73 89 103 153649
- 211108982498 2 239 6361 69431
- 211641323986 2 127 599 1391041
- 215470719934 2 127 13367 63463
- 222461530066 2 151 1721 428023
- 224981223886 2 199 367 631 2441
- 233069077726 2 23 31 151 601 1801
- 261712995886 2 31 233 631 28711
- 264326824126 2 31 367 2441 4759
- 266213783122 2 7 45137 421279
- 273322367806 2 151 431 2099863
- 278007622606 2 7 31 271 1103 2143
- 281928253426 2 151 4663 200201
- 291328299406 2 73 631 991 3191
- 297876680146 2 31 151 3257 9769
- 315554044786 2 71 127 151 115879
- 335141132866 2 31 71 127 599479
- 351542853586 2 463 2591 146521
- 352188388018 2 73 233 10353001
- 354716524306 2 31 881 991 6553
- 356788708046 2 2927 6271 9719
- 357647681422 2 1087 164511353
- 365187556126 2 31 71 73 631 1801
- 387932434066 2 31 89 4177 16831
- 398842105186 2 7 47 73 631 13159
- 423429752866 2 31 47 9719 14951
- 434671442206 2 31 337 1871 11119
- 442366889966 2 23 89 127 850807
- 443624282494 2 239 18127 51199
- 468713690974 2 89 14633 179951
- 484454279566 2 631 1103 348031
- 487199621746 2 631 6719 57457
- 514377881326 2 127 199 881 11551
- 543726705026 2 71 127 239 126151
- 547551530002 2 40433 6771097
- 553588254766 2 191 337 967 4447
- 569903252626 2 151 39551 47713
- 587924453326 2 7 31 89 151 100801
- 591379183822 2 7 47 103 2089 4177
- 600030498926 2 23 31 420778751
- 601335417266 2 23 31 3191 132151
- 605339739346 2 23 31 151 881 3191
- 635501599426 2 73 199 919 23801
- 650537257294 2 23 73 2089 92737
- 652746157966 2 7 89 991 528631
- 689380287058 2 89 337 11492353
- 738239981326 2 31 463 881 29191
- 754907532226 2 103 337 881 12343
- 775619881726 2 2351 2551 64663
- 778581406786 2 839 3823 121369
- 851011808626 2 7 89 601 631 1801
- 860026430158 2 7 55633 1104209
- 861969666286 2 31 79 151 631 1847
- 880365757426 2 23 127 239 337 1871
- 902678572846 2 73 127 359 135607
- 957191716174 2 23 103 337 599479
- 979053260626 2 7 31 89 751 33751
- ------------
-