home *** CD-ROM | disk | FTP | other *** search
- Newsgroups: sci.math
- Path: sparky!uunet!charon.amdahl.com!pacbell.com!iggy.GW.Vitalink.COM!cs.widener.edu!ukma!darwin.sura.net!zaphod.mps.ohio-state.edu!sdd.hp.com!elroy.jpl.nasa.gov!ucla-cs!ucla-ma!broxton.math.ucla.edu!shteingd
- From: shteingd@broxton.math.ucla.edu (Semion D. Shteingold)
- Subject: Re: Topological Question
- Message-ID: <1992Oct12.230458.28097@math.ucla.edu>
- Sender: news@math.ucla.edu
- Reply-To: shteingd@broxton.math.ucla.edu (Semion D. Shteingold)
- Organization: UCLA Mathematics Department
- References: <1992Oct12.163249.1@vmsa.technion.ac.il>
- Date: Mon, 12 Oct 92 23:04:58 GMT
- Lines: 15
-
- In article <1992Oct12.163249.1@vmsa.technion.ac.il>,
- chr09tk@vmsa.technion.ac.il writes:
- |> Hello!
- |>
- |> Can anyone help me with the folowing topological question:
- |> Is there a connected and locally connected topological space which is
- not path
- |> connected?
- |> Is there such a space which is also compact?
- |>
- |> Thanks in advance,
- |> Guy
-
- What about X={(x,sin(1/x)):x \in (0;1]}+{0}*[-1;1] ?
- I think it's ctd, cpt, but not linear ctd.
-