home *** CD-ROM | disk | FTP | other *** search
- Newsgroups: sci.math
- Path: sparky!uunet!cs.utexas.edu!torn!watserv2.uwaterloo.ca!watdragon.uwaterloo.ca!daisy.uwaterloo.ca!deghare
- From: deghare@daisy.uwaterloo.ca (Dave Hare)
- Subject: Re: Looking for a slick proof
- Message-ID: <Bvr85r.26E@watdragon.uwaterloo.ca>
- Sender: news@watdragon.uwaterloo.ca (USENET News System)
- Organization: University of Waterloo
- References: <1aterkINNj4f@matt.ksu.ksu.edu> <hunt.718423655@shy.umd.edu>
- Date: Wed, 7 Oct 1992 13:58:38 GMT
- Lines: 27
-
- In article <hunt.718423655@shy.umd.edu> hunt@shy.umd.edu (Brian Hunt) writes:
- >bubai@matt.ksu.ksu.edu (P.Chatterjee) writes:
- >>How does one prove that 2^n divides n*(n+1)*(n+2)*......*(2n) without
- >>having to resort to the 'odd' and 'even' induction? Any ideas?
- >
- >In fact 2^n divides (n+1)(n+2)...(2n), and it's the largest power of 2
- >to do so. Let [x] be the greatest integer less than or equal to x.
- >Then the largest power of 2 which divides n! is
- >
- >[n/2] + [n/4] + [n/8] + ...
- >
- >(above is {# of multiples of 2 <= n} + {# of multiples of 4 <= n} + ...)
- >while the largest power of 2 which divides (2n)! is
- >
- >[n] + [n/2] + [n/4] + ...
- >
- >so the largest power of 2 which divides (2n)!/n! is [n] = n.
- >
- >Brian Hunt
- >hunt@ipst.umd.edu
-
- I think this is easier: (2n)! = 1*3*5*...*(2n-1)*2*4*6*...*(2n)
- = 1*3*5*...*(2n-1)*2^n*n!
- so (2n)!/n! = (n+1)*(n+2)*...*(2n)
- = 2^n * 1*3*5*...*(2n-1)
-
- Dave Hare
-