home *** CD-ROM | disk | FTP | other *** search
- Path: sparky!uunet!wupost!sdd.hp.com!uakari.primate.wisc.edu!usenet.coe.montana.edu!news.u.washington.edu!uw-beaver!Teknowledge.COM!unix!nova.sarnoff.com!vhyaduck!jms
- From: jms@vision.sarnoff.com (Jerry Shapiro x2420)
- Newsgroups: sci.math.stat
- Subject: Re: min ave self-information inference
- Message-ID: <1992Sep15.210221.22838@nova.sarnoff.com>
- Date: 15 Sep 92 21:02:21 GMT
- References: <POPAT.92Sep14212000@image.mit.edu>
- Sender: news@nova.sarnoff.com
- Reply-To: jms@vision.sarnoff.com
- Organization: David Sarnoff Research Center
- Lines: 36
- Nntp-Posting-Host: vhyaduck
-
- In article 92Sep14212000@image.mit.edu, popat@image.mit.edu (Kris Popat) writes:
- >
- >Suppose you have a parametric model for the probability density
- >function of a discrete random variable, and a set of observed values.
- >Call the model pdf p(x), and call the observed values x_1,...x_N. The
- >goal is to find parameter values that make the model pdf p(x_i)
- >approximate the "true" but unknown pdf q(x_i).
- >
- >One way to fit the model to the data would be to find parameter values
- >that minimize
- >
- > -sum(log p(x_i))
- >
- >i.e., to minimize the total self-information of the observed points
- >with respect to the model. This "works" because for a given true pdf
- >q(x_i) and for all valid model pdfs p(x_i),
- >
- > E[-log(p(x_i))] = -sum( q(x_i) log p(x_i) )
- >
- >is minimized when p = q.
- >
- >I'd like a pointer to any papers that discuss this or similar
- >approaches to parametric pdf fitting.
- >
- >Kris Popat
- >MIT Rm E15-391 Cambridge, MA 02139
-
-
- This is the best approach. You're actually minimizing the "sample" relative
- entropy D(p||q) which is has many properties of a distance metric between pdf's.
- D(p||q) is defined as sum(p(x) log[p(x)/q(x)]). See Cover's information theory text.
-
- For example for a two-sided Laplacian density q(x;A) = 0.5Aexp(-A|x|),
- you end up with A = 1/E[|x|], where E[|x|] is the sample mean of the absolute values.
-
- Jerry Shapiro
-