home *** CD-ROM | disk | FTP | other *** search
- Newsgroups: sci.math
- Path: sparky!uunet!elroy.jpl.nasa.gov!sdd.hp.com!news.cs.indiana.edu!news.orst.edu!pmontgom
- From: pmontgom@math.orst.edu (Peter Montgomery)
- Subject: Re: Prime Factor Numbers
- Message-ID: <BuFtz8.7En@news.orst.edu>
- Sender: usenet@news.orst.edu (Usenet News admin)
- Nntp-Posting-Host: ilanga.math.orst.edu
- Organization: Oregon State University Math Department
- References: <1992Sep8.040307.6288@cronkite.ocis.temple.edu> <flash.716162039@ellison>
- Date: Fri, 11 Sep 1992 23:45:06 GMT
- Lines: 110
-
- In article <flash.716162039@ellison> flash@unx.sas.com (Gordon Keener) writes:
- >In <1992Sep8.040307.6288@cronkite.ocis.temple.edu>
- >sklar@picasso.ocis.temple.edu (Dave Sklar) writes:
- >
- >
- >> Here's something I was thinking about. Take a number, n, and write
- >>down its prime factors [Excluding n and 1] from left to right, forming a new number. Repeat.
- >> When you get to a prime number, you end. Let's call the function
- >>d(n). So, d(1001)=71113, d(5)=d(2)=d(11)=[Define something here, say]0.
- >> Does every number eventually go to a prime, and then 0?
- >
- >Well, I did a (slow) little shell script using the poor UNIX "factor" program,
- >and discovered that every n < 150000 either goes to a prime or exceeds 10^15,
- >at which point factor can't deal with it. Quite a few of them did overflow,
- >though, (including 1001; the smallest number that did was 91), so I would
- >guess that some of them will keep growing to infinity. I did notice quite a
- >few 12- and 13-digit primes, though, so not all sequences terminate in small
- >primes.
-
- Modulo any typos I made while concatenating factors,
- it terminates on a 40-digit prime (actually a probable prime)
- if one starts at n = 91. Only one number in the sequence (2331)
- has a repeated factor.
-
- 91
- 7 13
- 713
- 23 31
- 2331
- 3 3 7 37
- 3737
- 37 101
- 37101
- 3 83 149
- 383149
- 13 29473
- 1329473
- 109 12197
- 10912197
- 3 283 12853
- 328312853
- 11 29846623
- 1129846623
- 3 73 5159117
- 3735159117
- 3 1245053039
- 31245053039
- 173 977 184859
- 173977184859
- 3 29 317 6308321
- 3293176308321
- 3 19 269 2417 88861
- 319269241788861
- 3 7 13 251 23869 195203
- 371325123869195203
- 127 86477 33810375857
- 1278647733810375857
- 166562203 7676698019
- 1665622037676698019
- 3 3 17 42715741 254857303
- 331742715741254857303
- 11 197 7753 1101571 17925043
- 111977753110157117925043
- 71711 1802653 866231224721
- 717111802653866231224721
- 47 59 131 1974084348402854767
- 47591311974084348402854767
- 61 179 269 1000651 16192350561847
- 61179269100065116192350561847
- 43 104647799 13595830142605429571
- 4310464779913595830142605429571
- 421 1179979043 8676962308986514957
- 42111799790438676962308986514957
- 7 73 2178619 37826975301590901045673
- 773217861937826975301590901045673
- 29 1039 73897 31009841 11198554951734379
- 291039738973100984111198554951734379
- 5497123 52944010707619419123639502873
- 549712352944010707619419123639502873
- 17 107510547289 300770683219476756223921
- 17107510547289300770683219476756223921
- 745741 22940284290778300738035349372981
- 74574122940284290778300738035349372981
- 3810577 19570296818640402956901471361253
- 381057719570296818640402956901471361253
- 3 232690001463497 545873217834379601755583
- 3232690001463497545873217834379601755583
- 3232690001463497545873217834379601755583
-
- Let a_k be the k-th term in the sequence beginning
- with a_0 = n. Heuristically, a large integer N has about
- ln(ln(N)) prime factors. We expect a_{k+1} to be about
- ln(ln(N))/2 decimal digits longer than a_k (and it could
- be shorter if some factors of a_k are repeated). That is,
-
- ln(ln(a_k))/2
- a_{k+1} ~ a_k * 10
- ln(a_{k+1}) ~ ln(a_k) + 1.15 * ln(ln(a_k))
- ln(a_k) ~ 1.15 k ln (k)
-
- The probability that a particular N is prime is about
- 1/ln(N). We expect a_k to be prime with probability
- about 1/(1.15 k ln(k)). Since sum 1/(k ln (k)) diverges,
- this heuristic argument predicts we will always encounter a prime.
-
- --
- Peter L. Montgomery Internet: pmontgom@math.orst.edu
- Dept. of Mathematics, Oregon State Univ, Corvallis, OR 97331-4605 USA
- ``Who do you trust?'' Those whom I trust know English spelling and grammar.
- Our economy needs more business, not more Bushiness.
-