home *** CD-ROM | disk | FTP | other *** search
- Path: sparky!uunet!wupost!waikato.ac.nz!comp.vuw.ac.nz!canterbury.ac.nz!math!wft
- Newsgroups: sci.math
- Subject: What's going on here ???
- Message-ID: <1992Sep11.214701.783@csc.canterbury.ac.nz>
- From: wft@math.canterbury.ac.nz (Bill Taylor)
- Date: 11 Sep 92 21:46:59 +1200
- Distribution: world
- Organization: Department of Mathematics, University of Canterbury
- Nntp-Posting-Host: math.canterbury.ac.nz
- Lines: 62
-
- The following rather silly problem cropped up in our department just now.
-
- Evaluate S = 0! - 1! + 2! - 3! + 4! - ....
-
- (yes, I know it's divergent, but blame Euler, not me.)
-
- ------------------------
- Crazy solution (1)
-
- oo oo oo oo oo oo
- \~~ n \~~ n / n -x / -x \~~ n / -x 1
- S = > (-1) n! = > (-1) | x e dx = | e >(-x) dx = | e --- dx
- /__ /__ / / /__ / 1+x
- n=0 n=0 0 0 n=0 0
-
- = .5963..
-
- -----------------------
- Crazy solution (2)
-
- 2 3 4
- S = f(1) where f(x) = 0! - x 1! + x 2! - x 3! + x 4! - ...
-
- 2 3
- So (x f(x))' = 1! - x 2! + x 3! - x 4! + ...
-
- = (1 - f(x))/x
- 2 1 1
- Thus x f' + (1+x)f = 1 this has integrating factor - exp(- ---)
- x x
-
- Thus [ x exp(-1/x) f(x) ]' = exp(-1/x)/x
-
- x
- /
- thus x exp(-x) f(x) = | exp(-1/t)/t dt now put x=1
- /
- 0
- 1
- /
- thus f(1)/e = | exp(-1/t)/t dt and put u=1/t
- /
- 0
- oo
- /
- = e | exp(-u)/u du = .5963..
- /
- 1
-
- being essentially the same integral as in crazy solution (1).
- -----------------------
-
- So what's going on here ????
-
- Two crazy solutions to a crazy problem giving the same answer. Why ?
-
- --------------------------------------------------------------------------
- Bill Taylor wft@math.canterbury.ac.nz
- --------------------------------------------------------------------------
- MATH: necessary consequences of arbitrary axioms about meaningless things.
- --------------------------------------------------------------------------
-
-