home *** CD-ROM | disk | FTP | other *** search
- Path: sparky!uunet!mcsun!sun4nl!tuegate.tue.nl!rw7.urc.tue.nl!wsadjw
- From: wsadjw@rw7.urc.tue.nl (Jan Willem Nienhuys)
- Newsgroups: sci.math
- Subject: Re: what are quadturnians?
- Message-ID: <5331@tuegate.tue.nl>
- Date: 9 Sep 92 15:31:05 GMT
- References: <1992Sep8.204428.28058@nsisrv.gsfc.nasa.gov> <1992Sep8.234757.26306@maths.tcd.ie> <CHALCRAFT.92Sep9092653@laurel.uk.tele.nokia.fi>
- Sender: root@tuegate.tue.nl
- Reply-To: wsadjw@urc.tue.nl
- Organization: Eindhoven University of Technology, The Netherlands
- Lines: 20
-
- In article <CHALCRAFT.92Sep9092653@laurel.uk.tele.nokia.fi> chalcraft@uk.tele.nokia.fi (Adam Chalcraft) writes:
- #
- #The extra information is that you represent (x,y,z) in the obvious way by
- #xi+yj+zk, and then translations correspond to addition. This much is
- #obvious, and gains you nothing so far. The clever bit is that if
- #
- # (x1i+y1j+z1k)*(x2i+y2j+z2k)=-t3+x3i+y3j+z3k
- #
- #then t3 is (x1,y1,z1).(x2,y2,z2) [dot product] and (x3,y3,z3) is
- #(x1,y1,z1)^(x2,y2,z2) [cross product] (check sign before use :-).
- #
-
- somewhat easier: quaternions are pairs (a,v) with a real and v vector (3D),
- evident addition, and multiplication:
-
- (a,v)(b,w)= (ab - v.w , aw + bv + v^w ).
-
- (I emailed the original poster, but it bounced.)
-
- JWN
-