home *** CD-ROM | disk | FTP | other *** search
- Newsgroups: sci.math
- Path: sparky!uunet!cs.utexas.edu!usc!sol.ctr.columbia.edu!sld
- From: sld@etta.auc.edu (Steven Louis Davis)
- Subject: looking for reference for the Lebesgue Density Theorem
- Organization: Spelman College, ATL, GA, USA
- Message-ID: <1992Sep8.142835.25412@ctr.columbia.edu>
- Distribution: usa
- Sender: news@ctr.columbia.edu (The Daily Lose)
- Date: Tue, 8 Sep 1992 14:28:35 GMT
- X-Posted-From: etta.auc.edu
- X-Posted-Through: sol.ctr.columbia.edu
- Lines: 31
-
-
- If anyone out there can help I would appreciate it. I've looked
- through all of my 'standard' measure, integration, and analysis
- books for this theorem:
-
- Let E be Lebesgue measurable. Then except for a
- negligable set we have
-
- L(E*B(r,x)) { 1, x in E
- lim ---------- = {
- r->0 L(B(r,x)) { 0, x not in E
-
- (* denotes set intersection, B(r,x) is the ball of
- radius r about x)
-
- I'm looing for the proof that uses the Vitali Covering Theorem
- using the covers {B(r,x): x in E, r<e, L(E*B(r,x)) > aL(B(r,x))}
- for e>0, a<1.
-
- ************************************************************************
- * Steve Davis ***************************** internet: sld@etta.auc.edu *
- * Spelman College ************************* telephone: (404) 223-7626 **
- * 350 Spelman Lane S.W. ******************* fax: (404) 659-8930 ********
- * Atlanta, Georgia 30314 ** this space intentionally left blank--oops**
- ************************************************************************
-
- --
- ************************************************************************
- * Steve Davis ***************************** internet: sld@etta.auc.edu *
- * Spelman College ************************* telephone: (404) 223-7626 **
- * 350 Spelman Lane S.W. ******************* fax: (404) 659-8930 ********
-