home *** CD-ROM | disk | FTP | other *** search
- Path: sparky!uunet!ogicse!usenet.coe.montana.edu!uakari.primate.wisc.edu!sdd.hp.com!news.cs.indiana.edu!umn.edu!thompson
- From: thompson@atlas.socsci.umn.edu (T. Scott Thompson)
- Newsgroups: sci.math.stat
- Subject: Re: Simple Proof that c=median minimizes E[ |X-c| ] needed.
- Message-ID: <thompson.715622525@daphne.socsci.umn.edu>
- Date: 4 Sep 92 16:02:05 GMT
- Article-I.D.: daphne.thompson.715622525
- References: <3SEP199213440863@utkvx2.utk.edu> <1992Sep3.221035.17952@massey.ac.nz> <thompson.715572071@daphne.socsci.umn.edu>
- Sender: news@news2.cis.umn.edu (Usenet News Administration)
- Reply-To: thompson@atlas.socsci.umn.edu
- Organization: Economics Department, University of Minnesota
- Lines: 13
- Nntp-Posting-Host: daphne.socsci.umn.edu
-
- The original poster might also be interested in the fact that
- c = median also solves the problem
-
- min E( |x-c| - |x| )
- c
-
- The advantage of this characterization over the original one is that
- since |x-c| - |x| is a bounded function of x, the expectation
- E( |x-c| - |x| ) always exists, while E( |x-c| ) might be infinite.
- --
- T. Scott Thompson email: thompson@atlas.socsci.umn.edu
- Department of Economics phone: (612) 625-0119
- University of Minnesota fax: (612) 624-0209
-