home *** CD-ROM | disk | FTP | other *** search
- Newsgroups: sci.math.research
- Path: sparky!uunet!wupost!sdd.hp.com!ux1.cso.uiuc.edu!news.cso.uiuc.edu!usenet
- From: israel@unixg.ubc.ca (Robert B. Israel)
- Subject: Re: Borel measure question
- References: <17dh96INN35s@function.mps.ohio-state.edu>
- Nntp-Posting-Host: unixg.ubc.ca
- Message-ID: <israel.714765113@unixg.ubc.ca>
- Sender: Daniel Grayson <dan@math.uiuc.edu>
- X-Submissions-To: sci-math-research@uiuc.edu
- Organization: University of British Columbia, Vancouver, B.C., Canada
- X-Administrivia-To: sci-math-research-request@uiuc.edu
- Approved: Daniel Grayson <dan@math.uiuc.edu>
- Date: Tue, 25 Aug 1992 17:51:53 GMT
- Lines: 36
-
- In <17dh96INN35s@function.mps.ohio-state.edu> edgar@function.mps.ohio-state.edu (Gerald Edgar) writes:
-
-
- >(I seem to remember seeing this, but can't remember for sure.)
-
- >Let S be a metric space. Write B(x,r) for the open ball with center
- >x and radius r. Let mu be a finite Borel measure on S. For fixed
- >r>0, does it follow that the function
-
- > x ---> mu(B(x,r))
-
- >(from S to R) is a Borel function of x ?
-
- Without loss of generality, assume that mu is a positive measure
- (for a signed measure, use the Hahn decomposition). Then your function
- is not only Borel, it is lower semicontinuous, i.e. for any t,
- {x: mu(B(x,r) > t} is open.
-
- Suppose mu(B(x,r)) > t. Since B(x,r) = union{B(x,r-1/n): n in positive
- integers}, mu(B(x,r-1/n)) > t for some positive integer n. If d(x,y) < 1/n,
- then B(x,r-1/n) is contained in B(y,r), so mu(B(y,r)) > t.
-
- >Assume, if necessary, that S is separable.
- >--
- > Gerald A. Edgar Internet: edgar@mps.ohio-state.edu
- > Department of Mathematics Bitnet: EDGAR@OHSTPY
- > The Ohio State University telephone: 614-292-0395 (Office)
- > Columbus, OH 43210 -292-4975 (Math. Dept.) -292-1479 (Dept. Fax)
-
- --
- Robert Israel israel@math.ubc.ca
- Department of Mathematics or israel@unixg.ubc.ca
- University of British Columbia
- Vancouver, BC, Canada V6T 1Y4
-
-
-