home *** CD-ROM | disk | FTP | other *** search
- Path: sparky!uunet!ogicse!das-news.harvard.edu!husc-news.harvard.edu!ramanujan!elkies
- From: elkies@ramanujan.harvard.edu (Noam Elkies)
- Newsgroups: sci.math
- Subject: Re: Abel's proof of the insolubility of the quint
- Message-ID: <1992Sep4.120349.15365@husc3.harvard.edu>
- Date: 4 Sep 92 16:03:48 GMT
- Article-I.D.: husc3.1992Sep4.120349.15365
- References: <87834@netnews.upenn.edu> <1992Sep3.122450.15337@husc3.harvard.edu> <87849@netnews.upenn.edu>
- Organization: Harvard Math Department
- Lines: 20
- Nntp-Posting-Host: ramanujan.harvard.edu
-
- In article <87849@netnews.upenn.edu>
- weemba@sagi.wistar.upenn.edu (Matthew P Wiener) writes:
- :In article <1992Sep3.122450.15337@husc3.harvard.edu>
- :elkies@ramanujan (Noam Elkies) writes:
- :>>I came across the proof in Rotman: identify the conjugacy classes of
- :>>A_5, and notice the impossibility of any of them forming a partition
- :>>for a size that non-trivially divides 60.
- :
- :>This nice proof is reasonably well-known, but can one get a proof
- :>of the simplicity of all A_n (n>4) from such ideas?
- :
- :I don't think so, although I don't know of a particular A_n where the
- :partition is possible, of course without forming a subgroup.
-
- The identity and simple transpositions together give a union of
- conjugacy classes of size (n^2+n+2)/2, which divides |A_n|=n!/2
- at least for n=11,18,27,37,38,46.
-
- --Noam D. Elkies (elkies@zariski.harvard.edu)
- Dept. of Mathematics, Harvard University
-