home *** CD-ROM | disk | FTP | other *** search
- Path: sparky!uunet!news.claremont.edu!ucivax!orion.oac.uci.edu!beckman.com!dn66!a_rubin
- Newsgroups: sci.math
- Subject: Re: Contents of n-dimensional sphere.
- Message-ID: <a_rubin.715274789@dn66>
- From: a_rubin@dsg4.dse.beckman.com (Arthur Rubin)
- Date: 31 Aug 92 15:26:29 GMT
- References: <lee.715264502@dutiag>
- Keywords: n-dimensional sphere.
- Nntp-Posting-Host: dn66.dse.beckman.com
- Lines: 40
-
- In <lee.715264502@dutiag> lee@dutiag.tudelft.nl (Marcel van der Lee) writes:
-
-
- > Hello,
-
- >There exists a formula to compute the contents of an n-dimensional sphere.
-
- > pi^(n/2)
- >C(n) = ------------- r^n
- > gamma(n/2+1)
-
- >Where C denotes the contents, n denotes the dimension and r the radius of
- >the sphere. I am wondering why the gamma function occurs in this formula.
- >If you have a proof or a good reference, please post it on Newsnet or send
- >it by e-mail to me.
- >Thanks.
-
-
- It is clear that C(n) == A(n) r^n, where A(n) is a function of n only.
-
- Hence:
-
- C(n+1) = Integral(s=-r to r, A(n) (r^2-s^2)^(n/2) ds) =
- 2 Integral(s=0 to r, A(n) (r^2-s^2)^(n/2) ds) = (substitute s = r t^(1/2))
- 2 Integral(t=0 to 1, A(n) r^(n+1) (1-t)^(n/2) 1/2 t^(-1/2) dt) =
- A(n) r^(n+1) Integral(t=0 to 1, t^(-1/2) (1-t)^(n/2) dt) =
- A(n) r^(n+1) beta(1/2,n/2+1) =
- A(n) r^(n+1) gamma(1/2) gamma(n/2+1) / gamma((n+1)/2+1)
-
- gamma(1/2)^n
- so C(n) = K ------------- r^n
- gamma(n/2+1)
-
- C(0) = 1, so K = gamma(1) = 1; and gamma(1/2) = pi^(1/2) (many references,
- including the duplication formula), giving the desired result.
- --
- Arthur L. Rubin: a_rubin@dsg4.dse.beckman.com (work) Beckman Instruments/Brea
- 216-5888@mcimail.com 70707.453@compuserve.com arthur@pnet01.cts.com (personal)
- My opinions are my own, and do not represent those of my employer.
- My interaction with our news system is unstable; if you want to be sure I see a post, mail it.
-