home *** CD-ROM | disk | FTP | other *** search
- Newsgroups: sci.math
- Path: sparky!uunet!zaphod.mps.ohio-state.edu!sol.ctr.columbia.edu!destroyer!ubc-cs!unixg.ubc.ca!unixg.ubc.ca!israel
- From: israel@unixg.ubc.ca (Robert B. Israel)
- Subject: Re: x 2^x = 2^n ?
- Message-ID: <israel.714951978@unixg.ubc.ca>
- Sender: news@unixg.ubc.ca (Usenet News Maintenance)
- Nntp-Posting-Host: unixg.ubc.ca
- Organization: University of British Columbia, Vancouver, B.C., Canada
- References: <17gnuqINNr7k@darkstar.UCSC.EDU>
- Date: Thu, 27 Aug 1992 21:46:18 GMT
- Lines: 50
-
- In <17gnuqINNr7k@darkstar.UCSC.EDU> soeren@cse.ucsc.edu (Soren Soe) writes:
-
- >Can anyone tell me what `x' is in this equation:
-
- > x 2^x = 2^n
-
- >Is there a general solution, or do I have to approximate `x' to something like
- >x = n - lg n + a_little_more ?
- >In fact I can do with an approximation to x, iff
- > floor(x) <= app(x) <= x
-
- >I need the "floor" of `x' to solve the following summation, where k
- >would be equal to floor(x):
-
- > i=n-1
- > SUM min(2^i, 2^2^(n-i))
- > i=0
-
- > i=k i=n-1
- > = SUM 2^i + SUM 2^2^(n-i)
- > i=0 i=k+1
-
- >--soeren
-
- >Soren Soe,
- >soeren@ce.ucsc.edu
-
- I assume n is a positive integer. For n = 1, x = 1, so suppose n >= 2.
-
- Write n = 2^m k where m is a positive integer and 1 <= k < 2, i.e.
- m = floor(lg n).
-
- Let x1 = n - m - 1. Then x1 2^x1 < n 2^x1 = k 2^(n-1) < 2^n. So x1 < x.
-
- Let x2 = n - m + 1. Then x2 2^x2 = 2^(n+1) k x2/n >= 2^(n+1) (1 - (m - 1)/n)
- >= 2^(n+1) (1 - (m-1) 2^(-m)) > 2^n
-
- since m - 1 < 2^(m-1) for all m. So x > x2. Thus floor(x) is either
- x3 = n - m or x1 = n - m - 1.
-
- Now x3 2^x3 = (n-m) 2^(n-m) = (n-m)k/n 2^n. To have floor(x) = x3 we need
- n <= (n-m) k = (n-m) n 2^(-m), i.e. n >= 2^m + m. Thus we conclude that
- floor(x) = n - m - 1 if 2^m <= n < 2^m + m for some m
- floor(x) = n - m if 2^m + m <= n < 2^(m+1).
-
- --
- Robert Israel israel@math.ubc.ca
- Department of Mathematics or israel@unixg.ubc.ca
- University of British Columbia
- Vancouver, BC, Canada V6T 1Y4
-