home *** CD-ROM | disk | FTP | other *** search
- Newsgroups: sci.math
- Path: sparky!uunet!mcsun!Germany.EU.net!Urmel.Informatik.RWTH-Aachen.DE!kaa!dak
- From: dak@kaa.informatik.rwth-aachen.de (David Kastrup)
- Subject: Re: x 2^x = 2^n ?
- Message-ID: <dak.714903936@kaa>
- Sender: news@Urmel.Informatik.RWTH-Aachen.DE (Newsfiles Owner)
- Nntp-Posting-Host: kaa
- Organization: Rechnerbetrieb Informatik / RWTH Aachen
- References: <17gnuqINNr7k@darkstar.UCSC.EDU>
- Date: 27 Aug 92 08:25:36 GMT
- Lines: 32
-
- soeren@cse.ucsc.edu (Soren Soe) writes:
-
- >Can anyone tell me what `x' is in this equation:
-
- > x 2^x = 2^n
-
- >Is there a general solution, or do I have to approximate `x' to something like
- >x = n - lg n + a_little_more ?
- >In fact I can do with an approximation to x, iff
- > floor(x) <= app(x) <= x
-
- >I need the "floor" of `x' to solve the following summation, where k
- >would be equal to floor(x):
-
- > i=n-1
- > SUM min(2^i, 2^2^(n-i))
- > i=0
-
- > i=k i=n-1
- > = SUM 2^i + SUM 2^2^(n-i)
- > i=0 i=k+1
-
- >--soeren
-
- >Soren Soe,
- >soeren@ce.ucsc.edu
- x = n - lg x
- x = n - lg (n - lg x)
- x = n - lg n - lg (1 - (lg x)/n)
- Now lg (1-k) = lg e ln (1-k) >= (lg e) (-k).
- Setting k = (lg x)/n, you can see that an error of 1 can be achieved
- easily for greater values of x.
-