home *** CD-ROM | disk | FTP | other *** search
- Newsgroups: sci.math.research
- Path: sparky!uunet!usc!sdd.hp.com!ux1.cso.uiuc.edu!news.cso.uiuc.edu!usenet
- From: victor@watson.ibm.com (Victor Miller)
- Subject: Re: The character group of k((x))
- Disclaimer: This posting represents the poster's views, not necessarily those of IBM
- References: <VICTOR.92Aug17114712@terse4.watson.ibm.com>
- Nntp-Posting-Host: terse4.watson.ibm.com
- Message-ID: <VICTOR.92Aug17160736@terse4.watson.ibm.com>
- Sender: Daniel Grayson <dan@math.uiuc.edu>
- Reply-To: victor@watson.ibm.com
- X-Submissions-To: sci-math-research@uiuc.edu
- Organization: IBM, T.J. Watson Research Center
- X-Administrivia-To: sci-math-research-request@uiuc.edu
- Approved: Daniel Grayson <dan@math.uiuc.edu>
- In-Reply-To: victor@watson.ibm.com's message of Mon, 17 Aug 1992 15:47:12 GMT
- Date: Mon, 17 Aug 1992 20:07:36 GMT
- Lines: 23
-
- I received the following answer, which is just what I'm looking for:
-
-
-
- Date: Mon, 17 Aug 92 21:08:24 +0200
- From: Torsten Ekedahl <teke@matematik.su.se>
- Message-Id: <9208171908.AA11751@candida.matematik.su.se>
- To: victor@watson.ibm.com
- In-Reply-To: victor@watson.ibm.com's message of Mon, 17 Aug 1992 15:47:12 GMT
- Subject: The character group of k((x))
-
- Andre Weils Basic Number Theory (Springer Grundl d. math. Wiss. 144),
- particularly II:5, discusses this. Indeed, k((x)) is self dual as
- topological dual, k[[x]] is a compact subgroup with discrete quotient
- and is its own annihilator for a suitable normalisation of the self
- duality.
-
- --
- Victor S. Miller
- Vnet and Bitnet: VICTOR at WATSON
- Internet: victor@watson.ibm.com
- IBM, TJ Watson Research Center
-
-