home *** CD-ROM | disk | FTP | other *** search
- Newsgroups: sci.math.research
- Path: sparky!uunet!usc!sdd.hp.com!ux1.cso.uiuc.edu!news.cso.uiuc.edu!usenet
- From: Allan Adler <ara@zurich.ai.mit.edu>
- Subject: Re: The character group of k((x))
- References: <VICTOR.92Aug17114712@terse4.watson.ibm.com>
- Message-ID: <ARA.92Aug17144451@camelot.ai.mit.edu>
- Sender: Daniel Grayson <dan@math.uiuc.edu>
- X-Submissions-To: sci-math-research@uiuc.edu
- Organization: M.I.T. Artificial Intelligence Lab.
- X-Administrivia-To: sci-math-research-request@uiuc.edu
- Approved: Daniel Grayson <dan@math.uiuc.edu>
- In-Reply-To: victor@watson.ibm.com's message of Mon, 17 Aug 1992 15:47:12 GMT
- Date: Mon, 17 Aug 1992 19:44:51 GMT
- Lines: 16
-
- In article <VICTOR.92Aug17114712@terse4.watson.ibm.com> victor@watson.ibm.com (Victor Miller) writes:
-
- Can anyone point me to an article which discusses the group of
- continuous characters of k((x)) (Laurent series in x) where k is a
- finite field? I vaguely seem to remember that using this groups
- should give some sort of duality between k((x))/k[x] and k[x].
-
-
-
-
- See Andre Weil's book Basic Number Theory.
-
- Allan Adler
- ara@altdorf.ai.mit.edu
-
-
-