home *** CD-ROM | disk | FTP | other *** search
/ NetNews Usenet Archive 1992 #18 / NN_1992_18.iso / spool / sci / math / 10479 < prev    next >
Encoding:
Text File  |  1992-08-21  |  1.0 KB  |  28 lines

  1. Newsgroups: sci.math
  2. Path: sparky!uunet!mcsun!Germany.EU.net!ecrc!acrab20!jeanmarc
  3. From: jeanmarc@ecrc.de (Jean-Marc Andreoli)
  4. Subject: Primes in x_{n+1} = ax_n+b (was Re: u(v^n)w prime puzzle)
  5. Message-ID: <1992Aug21.103132.29967@ecrc.de>
  6. Sender: news@ecrc.de
  7. Reply-To: jeanmarc@ecrc.de
  8. Organization: European Computer industry Research Centre GmbH.
  9. References: <a_rubin.714331997@dn66>
  10. Date: Fri, 21 Aug 1992 10:31:32 GMT
  11. Lines: 15
  12.  
  13. Let a,b be integers, and (x_n) be a sequence s.t. x_{n+1} = a x_n + b
  14.  
  15. My question is: does it contain infinitely many primes ?
  16.  
  17. There are trivial cases, where the answer is no:
  18. 1/ if (a x_0 + b = x_0) the sequence is constant.
  19. 2/ if (a = -1) the sequence alternates between two values x_0 and x_1.
  20. 3/ if ((a,b) > 1 or (x_0,b) > 1) then the sequence clearly contains only composite numbers.
  21.  
  22. What about the other cases ?
  23.  
  24. I've seen a "theorem of Dirichlet" in Hardy&Wright which handles the case a=1. Can anyone give me a pointer to a proof of that theorem (Hardy&Wright don't give it and the only reference they give is in German).
  25.  
  26. ---
  27.  
  28.