home *** CD-ROM | disk | FTP | other *** search
- Path: sparky!uunet!usc!elroy.jpl.nasa.gov!news.claremont.edu!ucivax!orion.oac.uci.edu!beckman.com!dn66!a_rubin
- Newsgroups: sci.math
- Subject: Re: int(x*log(x)*((1-x)^n), x=0..1)
- Message-ID: <a_rubin.714332240@dn66>
- From: a_rubin@dsg4.dse.beckman.com (Arthur Rubin)
- Date: 20 Aug 92 17:37:20 GMT
- References: <dld.714296391@bruce.cs.monash.edu.au>
- Keywords: Hairy integral, Beta function
- Nntp-Posting-Host: dn66.dse.beckman.com
- Lines: 24
-
- In <dld.714296391@bruce.cs.monash.edu.au> dld@cs.monash.edu.au (David L Dowe) writes:
-
- >Let I(n) = int(x*log(x)*((1-x)^n), x=0..1);
- >to use Maple's notation. n is a positive integer. log is ln .
-
- >I seek as simple an expression as possible or, that failing, as rapidly
- >converging an expression as possible for I(n).
-
- Futher simplification shows:
-
- n^2+n-1 (1 + 1/2 + ... + 1/n)
- I(n) = --------------- - ---------------------,
- (n+1)^2 (n+2)^2 (n+1) (n+2)
-
-
- which can readily be proved by induction, noting the the integral for
-
- (n+1) I(n) - (n+3) I(n+1) can be written in closed form.
-
- --
- Arthur L. Rubin: a_rubin@dsg4.dse.beckman.com (work) Beckman Instruments/Brea
- 216-5888@mcimail.com 70707.453@compuserve.com arthur@pnet01.cts.com (personal)
- My opinions are my own, and do not represent those of my employer.
- My interaction with our news system is unstable; if you want to be sure I see a post, mail it.
-