home *** CD-ROM | disk | FTP | other *** search
- Path: sparky!uunet!usc!zaphod.mps.ohio-state.edu!magnus.acs.ohio-state.edu!slc3.ins.cwru.edu!agate!dog.ee.lbl.gov!network.ucsd.edu!mvb.saic.com!unogate!beckman.com!dn66!a_rubin
- Newsgroups: sci.math
- Subject: Re: Can you prove it?
- Message-ID: <a_rubin.714325625@dn66>
- From: a_rubin@dsg4.dse.beckman.com (Arthur Rubin)
- Date: 20 Aug 92 15:47:05 GMT
- References: <1992Aug20.055633.19046@nuscc.nus.sg>
- Keywords: Number theory
- Nntp-Posting-Host: dn66.dse.beckman.com
- Lines: 26
-
- In <1992Aug20.055633.19046@nuscc.nus.sg> bhonsle@bhonsle.iss.nus.sg (Shailendra K Bhonsle) writes:
-
- >Hi
- >I have a simple problem, can you prove or disprove it? I will appreciate all replies:
-
- >Problem:
-
- >Prove that for primes p & q, q<p
-
- >if 2^(p-1) == 1 (mod q^2)
-
- >then either 2^(q-1) == 1 (mod q^2) or q | p-1 { q divides (p-1}
-
-
- Actually, Bob's "proof" is wrong. However, ....
-
- 2^phi(q^2) == 1 (mod q^2), so (as phi(q^2) = q(q-1)),
- 2^GCD(p-1,q(q-1)) == 1 (mod q^2).
-
- If q does not divide p-1, then GCD(p-1,q(q-1)) = GCD(p-1,q-1) | q-1, so
- 2^(q-1) = 1 (mod q^2).
- --
- Arthur L. Rubin: a_rubin@dsg4.dse.beckman.com (work) Beckman Instruments/Brea
- 216-5888@mcimail.com 70707.453@compuserve.com arthur@pnet01.cts.com (personal)
- My opinions are my own, and do not represent those of my employer.
- My interaction with our news system is unstable; if you want to be sure I see a post, mail it.
-