home *** CD-ROM | disk | FTP | other *** search
- Newsgroups: sci.math
- Path: sparky!uunet!stanford.edu!leland.Stanford.EDU!algebra
- From: algebra@leland.Stanford.EDU (Leong Weng Ng)
- Subject: Re: Still another problem.
- Message-ID: <1992Aug12.230956.8546@leland.Stanford.EDU>
- Sender: news@leland.Stanford.EDU (Mr News)
- Organization: DSG, Stanford University, CA 94305, USA
- References: <1992Aug11.170858.275@csc.canterbury.ac.nz>
- Date: Wed, 12 Aug 92 23:09:56 GMT
- Lines: 24
-
- In article <1992Aug11.170858.275@csc.canterbury.ac.nz> wft@math.canterbury.ac.nz (Bill Taylor) writes:
- >Prove that
- >
- > n n n n
- > 1 / 2 3 4 5 \
- > - | 1 + -- + -- + -- + -- +.... |
- > e \ 1! 2! 3! 4! /
- >
- > is an integer for all positive integer n.
- >
- >---------------------------------------------------------------------
- > Bill Taylor wft@math.canterbury.ac.nz
- >---------------------------------------------------------------------
- > Stamp out silly signatures!
- >---------------------------------------------------------------------
- >
- The expression above is just the nth derivative of
- e^(e^x+x-1) at x = 0. The nth derivative is
- (n*e^x+1)*e^(e^x+x-1), as can be verified by induction.
- Substituting x = 0 shows that the expression reduces
- to n+1.
-
- Weng Leong
- Stanford U.
-